Циркуляция атмосферы

Циркуляция атмосферы — система замкнутых течений воздушных масс, проявляющихся в масштабах полушарий или всего земного шара. Подобные течения приводят к переносу вещества и энергии в атмосфере как в широтном, так и в меридиональном направлениях, из-за чего являются важнейшим климатообразующим процессом, влияя на погоду в любом месте планеты.

Изменчивость погоды общеизвестна и ее капризы ежедневно подтверждаются синоптическими картами и сводками погоды, которые появляются в интернете, газетах и демонстрируются по телевидению. Если же нанести на карты средние за один сезон или даже за целый год значения ветра, температуры и других метеорологических элементов, то более недолговечные характеристики, такие, как движущиеся циклоны или антициклоны, будут отфильтрованы и выявятся более простые и яркие характеристики ветров. На такой карте можно найти обширные области, в которых атмосфера ведет себя совершенно определенно. Рассмотрим основные области распределения давления, характеризующие атмосферную циркуляцию. Вблизи экватора виден пояс низкого давления, в котором большую часть года преобладают штиль или слабые ветры, — эту зону во времена парусного флота мореплаватели называли экваториальной зоной затишья. В период равноденствия (когда Солнце в полдень стоит вертикально над экватором) здесь обычно бывают грозовые шквалы. Эти шквалы формируются в межтропической зоне конвергенции (или на своеобразном тропическом фронте), где сходятся пассаты двух полушарий.

Межтропическая зона конвергенции в зависимости от положения Солнца в разные сезоны года перемещается из северного полушария в южное и обратно (можно заметить, что над сушей она движется несколько быстрее, чем над морем). С обеих сторон эту зону окаймляют области высокого давления, известные под названием конских широт. Ветры, движущиеся от этих областей в сторону экватора, и есть пассаты, имеющие в северном полушарии северо-восточное направление, а в южном — юго-восточное. Эти направления ветров постоянны только в Атлантическом океане, где не сказывается влияние муссонов Юго-Восточной Азии. Севернее и южнее конских широт, т. Е. между 35 и 60°, в обоих полушариях давление понижается по направлению к полюсам. В этих зонах преобладают западные ветры от поверхности земли до нижней стратосферы. В приземном слое они более изменчивы, чем пассаты, особенно в северном полушарии, где в этих широтах сильно развита циклоническая деятельность. Наконец, в очень высоких широтах, около полюсов, лежит небольшая область высокого давления, из которой ветры направлены к умеренным широтам.

Эта простая схема ветров в приземном слое существенно изменяется от сезона к сезону и зависит от неравномерного нагревания суши и моря солнцем — средний ветер меняет свое направление, интенсивность и даже характер. Например, в умеренных широтах циклоны чаще возникают зимой и движутся по направлению к экватору. Наоборот, субтропические антициклоны становятся особенно мощными летом и движутся по направлению к полюсам. Над континентами летом температура повышается, а атмосферное давление падает, тогда, как зимой имеет место обратное явление. Более четко давление и ветер изменяются при переходе от зимы к лету над Восточной Азией.

Характер ветра нарушают также горные хребты, особенно Скалистые горы, Анды и нагорье Тибет. Эти горные области способствуют превращению высотных западных ветров в серии волн в умеренных широтах. Эти волны, связанные с положением и формой основных высотных антициклонов и семейств циклонов вблизи поверхности земли, вероятно, ответственны в какой-то мере за сезонные изменения давления над континентами и морями. атмосфера погода энергообмен циркуляция

Чтобы получить некоторые сведения о сезонных изменениях общей циркуляции, рассмотрим общий характер ветров в «летнем» и «зимнем» полушариях одновременно. Летняя полусфера представляет простую картину. В тропических широтах до высоты примерно 18 км наблюдаются слабые и непостоянные восточные пассаты; на больших высотах скорость их повышается более чем до 100 км/час. Их называют иногда восточными ветрами Кракатау, потому что более трех лет они несли вулканическую пыль, выброшенную в атмосферу во время грандиозного извержения, которое произошло на острове Кракатау в 1883 г., и развеяли вокруг Земли. Иногда наблюдают восточные ветры и в полярных широтах.

Между поясами низкоширотных и высокоширотных восточных ветров существует система устойчивых западных ветров, которую называют западным переносом. Западные ветры дуют в слое от поверхности земли и до уровня 20 км. В отдельных районах скорость этих ветров резко возрастает, тогда образуются два или три быстро движущихся потока внутри ветровой системы. Такие потоки называются струйными течениями, они располагаются на высотах около 10 или 12 км (сразу под тропопаузой). Скорость ветров в этих потоках доходит до 400 км/ч и более. Впервые со струйными течениями встретились военные самолеты во время второй мировой войны, и с тех пор они исследуются с помощью радиозондов, самолетов и ракет. Сегодня самолеты, летящие с запада на восток, имеют преимущество перед теми, что летят с востока на запад, поскольку они могут воспользоваться этими струйными течениями. (Лишь одно значительное струйное течение направлено с востока на запад, оно развивается летом над Индийским океаном в северном полушарии.) Длина таких быстро несущихся рек воздуха колеблется от нескольких сотен до нескольких тысяч километров. Как правило, струйные течения в атмосфере связаны с резко углубляющимися циклонами, которые, двигаясь к экватору, способствуют усилению западных ветров и превращению их в струйные течения.

Зимой положение и интенсивность различных ветровых систем разнообразнее. В высоких широтах (выше 65°) восточные ветры значительно сильнее, чем летом, и проникают дальше к экватору. Выше 15 км в стратосфере восточные ветры заменяются сильными западными ветрами, которые циркулируют вокруг полюса и называются западными ветрами полярной ночи. Обычно различают ось струйного течения и ветры, дующие со скоростями до 300 км/ч на высотах от 25 до 30 км. В середине зимы наблюдаются самые сильные и устойчивые западные ветры в тропосфере, они несут стремительные и глубокие циклоны, гребни и антициклоны и определяют погоду в нижних слоях атмосферы. Если летом они обычно простираются от 35 до 65° широты на уровне моря, то зимой наблюдаются от 30 до 70°. (На высоте примерно 5 км они простираются почти от самого экватора до полюса.) В нижних слоях стратосферы ветры быстро ослабевают с высотой в среднем до 50 км/ч на уровне 20 км. Однако в верхних слоях стратосферы они снова набирают скорость, достигая максимума на высоте примерно 55 км, т. Е. уже в слоях нижней мезосферы. Эти высотные сильные западные ветры называются мезосферными западными потоками.

Вдоль всех этих воздушных потоков, как правило, движутся возмущения. Западные потоки в средних и высоких широтах характеризуются движением особенно мощных циклонов и антициклонов, которые связаны с волнами различных размеров в средней и верхней тропосфере и в нижней стратосфере. Практически карты среднего давления зимой на высоте 3 км и в мезосфере мало чем отличаются одна от другой. Но атмосфера при этом не ведет себя одинаково на всех уровнях. В стратосфере, например, ветры распространяются от холодных областей к теплым, а не наоборот, как в тропосфере. Циркуляция же в стратосфере является скорее охлаждающей, чем нагревающей системой, она усиливает контрасты температуры над различными частями земной поверхности, а не выравнивает их, хотя изменения температуры в целом определяют здесь вертикальные движения. Выше 80 км атмосфера ионизована и подвержена влиянию ряда других факторов, например, электрических и магнитных полей.

В последнее время многое стало известно об общей циркуляции в атмосфере, особенно в северном полушарии. Но даже сейчас по этим данным мы не можем судить о причинах изменения погоды и климата. Сведения об общей циркуляции были пополнены английскими, американскими и скандинавскими метеорологами, исследовавшими баланс углового момента. В качестве отправной точки они избрали предположение, что полная величина энергии и количество водяного пара, неравномерно распределенные по земному шару, должны оставаться постоянными в атмосфере в целом. И затем они смогли обнаружить, где находятся области источников и стоков энергии и водяного пара на Земле и как различные области обмениваются друг с другом запасами энергии и водяного пара.

Чтобы понять, как осуществляется обмен энергией, необходимо помнить, что атмосфера не только вращается вместе с Землей, но также имеет собственное движение вокруг земной оси. Другими словами, атмосфера обладает угловым моментом. Угловой момент тела, движущегося по кругу, пропорционален его скорости, расстоянию от центра круга (в данном случае от земной оси) и его массе. Угловой момент равен произведению трех указанных величин. Как было сказано выше, в низких широтах вообще преобладают восточные ветры (пассаты), а в средних — западные. Вследствие трения этих ветров о поверхность Земли, которая вращается с запада на восток, на низких широтах возникает значительный угловой момент западных ветров за счет большого здесь радиуса вращения атмосферы. Поэтому низкие широты являются источником углового момента, который переносится в область средних широт, играющих роль стока углового момента ровно настолько, насколько тормозят вращение Земли пассаты.

Западный перенос благодаря поверхностному трению ветра о земную поверхность способствует вращению Земли. В целом же скорость вращения Земли остается неизменной. Влияние поверхностного торможения должно было бы в течение примерно 10 дней остановить оба вида циркуляции, после чего атмосфера начала бы вращаться вместе с Землей, не будь этого переноса углового момента западных ветров от низких к высоким широтам. Однако это возможно лишь в равномерно нагретой атмосфере. Угловой момент от низких широт к высоким переносится циркуляцией в ячейке Гадлея и мощными циклонами, идущими из низких широт в высокие. Второй процесс ярче выражен в верхних слоях тропосферы с максимальным переносом на высоте примерно 10 км на широте 32°, т. Е. в области стационарных субтропических антициклонов. Кроме того, момент почти наверняка переносится большими волнами давления в верхних слоях тропосферы и сопровождающим их семейством приземных циклонических и антициклонических возмущений в умеренных широтах.

Подобно угловому моменту энергия переносится с низких широт и малых высот, куда поступает избыточное ее количество, к тем областям, где атмосфера теряет ее путем радиационного охлаждения, т. Е. к высоким широтам и большим высотам. Ветры — следствие неравномерного нагревания Земли — стремятся сгладить температурные различия, различия в кинетической энергии, в распределении водяного пара. Поток кинетической энергии относительно мал по сравнению с другими формами энергетического обмена.

Между широтами 30 и 40°, где обмен энергии наибольший, значение выделяемого при конденсации тепла и тепла, связанного с температурой воздуха в переносе энергии, более или менее одинаково. К северу от 40-й параллели больше всего энергии переносится в виде тепла, затраченного на испарение воды в тропиках. Скрытое тепло высвобождается, когда водяной пар конденсируется в облачные капли, особенно интенсивно в средней и верхней тропосфере. Здесь воздух интенсивно охлаждается благодаря длинноволновому излучению облаков в космическое пространство.

Атмосфера содержит примерно постоянное количество влаги, несмотря на неравномерное распределение испарения и осадков по поверхности земного шара. И подобно энергии и угловому моменту, влага переносится от областей, где испарение превышает осадки, к областям стока пара, где наблюдается обратный процесс, т. Е. количество осадков превышает испарение. Таким образом, достигается глобальный баланс влаги. Но вычислить в деталях количество влаги, участвующей в крупно- и мелкомасштабных переносах, люди не в состоянии, так как неизвестно, сколько осадков выпадает над большей частью океанов и над территорией, где нет достаточно густой сети станций. Кроме того, не существует и удовлетворительных приборов для измерения испарения. Правда, довольно точную оценку можно сделать и по некоторым косвенным данным. Некоторые региональные исследования показали, что распределение областей образования и стока водяного пара зависит не столько от широты места, сколько от других более сложных закономерностей. Например, оказалось, что сильно отдаленные друг от друга Мексиканский залив и северо-восточная часть Тихого океана обеспечивают около 90% всех осадков, выпадающих над бассейном реки Миссисипи. Был установлен другой парадоксальный факт: некоторые засушливые районы являются источниками водяного пара в атмосфере. (Здесь можно предположить, что в эти области вода поступает путем подземного стока или в виде рек.) Неудивительно, что меньше всего испарение в полярных районах вследствие низких температур и отсутствия достаточно сильных ветров. Но в средних широтах, особенно там, где часты сильные ветры и имеются теплые моря, испарение весьма интенсивное. Над теплыми океаническими течениями северной части Атлантического и Тихого океанов, например, испарение в год достигает 250 см.