Закаливание растений
Закаливание - это обратимое физиологическое приспособление к неблагоприятным воздействиям, происходящее под влиянием определенных внешних условий.
В результате процесса закаливания морозоустойчивость организма резко повышается. Способностью к закаливанию зависит от вида растения, его происхождения. Растения южного происхождения вообще к закаливанию не способны. У растений северных широт, переживающих значительное понижение температуры, процесс закаливания приурочен лишь к определенным этапам развития. Так, для приобретения способности к закаливанию древесины растения должны закончить процессы роста. Одновременно должен произойти отток различных веществ из надземных органов в корневые системы. Если в течение лета у древесных растений процессы роста не успели закончиться, то это может вызвать массовую гибель растений зимой.
Аналогичная картина характерна для растений, выращенных при несоответствующем фотопериоде, не успевших завершить летний рост и поэтому неспособных к закаливанию. Исследования показали, что яровые злаки по сравнению с озимыми растут при более пониженных плюсовых температурах, из-за этого в осенний период они почти не снижают темпов роста и не способны к закаливанию. Способность к закаливанию утрачивается весной в связи с началом ростовых процессов. Таким образом, устойчивость растений к морозу, способность пройти процессы закаливания тесно связаны с резким снижением темпов роста, с переходом растений в покоящееся состояние. Показано, что к закаливанию способен лишь организм в целом, при обязательном наличии корневой системы. Всякое нарушение процессов оттока (кольцевание) препятствует закаливанию. Собственно процесс закаливания требует определенного комплекса внешних условий и проходит в две фазы.
Первая фаза закаливания проходит на свету при несколько пониженных плюсовых температурах (днем около 10°С, ночью около 2°С) и умеренной влажности. В эту фазу продолжается дальнейшее замедление и даже полная остановка ростовых процессов. Особенное значение в развитии устойчивости растений к морозу в эту фазу имеет накопление сахарозы и других олигосахаров. В этих условиях образование сахаров в процессе фотосинтеза идет с достаточной интенсивностью. Вместе с тем пониженная температура сокращает их трату как в процессе дыхания, так и в процессах роста. Более морозостойкие виды и сорта характеризуются большей способностью к накоплению сахаров именно при пониженной температуре. Показано, что накапливающиеся в процессе закаливания сахара локализуются в разных частях клетки: не только в клеточном соке, но и в цитоплазме, органеллах (особенно хлоропластах). Благодаря такому распределению часть сахаров прочно удерживается в клетках.
Влияние сахаров на повышение морозоустойчивости растений многосторонне. Накапливаясь в клетках, сахара повышают концентрацию клеточного сока, снижают водный потенциал. Чем выше концентрация раствора, тем ниже его точка замерзания, поэтому накопление сахаров стабилизирует клеточные структуры, в частности хлоропласты, благодаря чему они продолжают функционировать. Процесс фотофосфорилирования продолжается даже при отрицательных температурах. Особенное значение имеет защитное влияние сахара на белки, сосредоточенные в поверхностных мембранах клетки. Защитное действие сахаров проявляется только в том случае, если происходит при одновременном понижении температуры. Имеются данные, что сахара повышают устойчивость именно специфических белков, образующихся при пониженной температуре.
Влияние света в первую фазу закаливания не ограничивается увеличением накопления сахаров, помимо этого свет оказывает регуляторное влияние. Это подтверждается тем, что этиолированные растения не способны к закаливанию даже при обогащении их сахарами. Высказывается предположение, что на свету в листьях образуется какой-то фактор, который транспортируется в узлы кущения и вызывает повышение их устойчивости. В первую фазу закаливания происходит также уменьшение содержания свободной воды. Излишняя влажность почвы (дождливая осень) препятствует прохождению процесса закаливания. Чем меньше в клетках и тканях содержание воды, тем меньше образуется льда и тем меньше опасность повреждения. К концу первой фазы закаливания клетки растений переходят в покоящееся состояние. Происходит процесс обособления цитоплазмы, что, в свою очередь, снижает возможность ее повреждения образующимися в межклетниках кристаллами льда.
Особенно интенсивно перестройка обмена веществ протекает в период второй фазы закаливания. Вторая фаза закаливания протекает при дальнейшем понижении температуры (около О°С) и не требует света. Прежде всего происходит дальнейшее новообразование специфических, устойчивых к обезвоживанию белков. Опыты показали, что в присутствии ингибиторов синтеза белка процесс закаливания не происходит. В относительно больших количествах накапливаются водорастворимые белки, отличающиеся менее крупными молекулами, но большей устойчивостью к обезвоживанию. Важное значение имеет изменение межмолекулярных связей белков цитоплазмы. При обезвоживании, происходящем под влиянием льдообразования, происходит сближение белковых молекул. Связи между ними рвутся и не восстанавливаются в прежнем виде из-за слишком сильного сближения и деформации белковых молекул. В связи с этим большое значение имеет наличие сульфгидрильных и других гидрофильных группировок, которые способствуют удержанию воды и препятствуют сближению молекул белка. Перестройка цитоплазмы способствует увеличению ее проницаемости для воды. Благодаря более быстрому оттоку воды уменьшается опасность внутриклеточного льдообразования.
Не для всех растений необходимо протекание процессов закаливания в две фазы. У древесных растений, обладающих достаточным количеством сахаров, сразу протекают изменения, соответствующие второй.
Таким образом, в процессе закаливания возникает морозоустойчивость, которая определяется рядом изменений. Чем больше развитие указанных признаков у отдельных видов и сортов растений, тем выше их морозоустойчивость. Повышение морозоустойчивости растений имеет большое практическое значение.