Моделирование основных гидрологических процессов

Геоинформационное обеспечение задач МКМ гидрологических процессов

В настоящее время моделирование наиболее эффективно и целесообразно проводить с использованием географических информационных систем (ГИС). В МКМ, как и в других областях науки применение ГИС обусловлено одними и теми же основными свойствами.

ГИС – это информационная система, обеспечивающая сбор, хранение, обработку, анализ, распространение и визуализацию данных распределенных как в пространстве, так и во времени. ГИС интегрирует картографическую информацию, таблицы, аэро- и космические снимки, данные статистики и переписи, материалы полевых исследований, социальных опросов и пр. в единой цифровой базе географических данных (геоданных). Очень важной функцией ГИС является возможность связи с внешними реляционными базами данных под управлением различными СУБД, которые позволяют хранить большие массивы как атрибутивной, так и пространственной информации. Также ГИС представляет собой специализированное программное обеспечение (программную оболочку), которое позволяет осуществлять, перечисленные выше, функции ГИС. Основная задача ГИС заключается в принятии управленческих решений, основанных на пространственном анализе, математико-картографическом моделировании, визуализации, прогнозировании и оценке. Использование ГИС – это системный подход в исследованиях [11].

ГИС-анализ представляет собой процесс поиска географических закономерностей в данных и взаимоотношений между пространственными объектами. Принцип такого анализа заключается в создании серии тематических электронных карт (слоев), результирующих таблиц и графиков на исследуемую территорию. Методы, которые используют для этой цели, могут быть очень простыми, в ряде случаев надо лишь создать аналитическую карту; или более сложными и комплексными, включающими много расчетных величин для моделирования реального мира и объединение большого числа различных слоев данных.

Любой анализ начинается со сбора и обработки первичной информации. Очень важными источниками для исследований являются различные статистические и табличные данные о количественных показателях исследуемой территории.

После сбора всей необходимой информации для ГИС-анализа и проведения исследований ее необходимо перевести в единую систему – базу геоданных. Это подразумевает под собой приведение к единой математической основе цифровых карт, космических снимков, данных GPS съемки, и интегрирование в ГИС-среду различных таблиц. Табличные данные информативны, но имеют один существенный недостаток для проведения географического анализа – они, в отличие от цифровых карт, напрямую не содержат информацию о пространственном положении объектов. После сбора и обработки всех исходных данных, нужно переходить непосредственно к решению исследовательских задач на основе ГИС-анализа.

Для решения задач пространственного и статистического анализа в ГИС имеется богатый набор инструментов. Они позволяют строить буферные зоны и зоны охвата, определять расстояния, получать геометрические характеристики объектов (длина, площадь), проводить различные пространственные и атрибутивные выборки (на основе SQL-запросов), делать операции оверлея (наложения слоев) и др. Это наиболее важные функции ГИС, и от их эффективности напрямую зависит эффективность и полезность самих ГИС [11].

Математико-картографическое моделирование позволяет рассчитывать значения какого-то показателя или явления на всей исследуемой территории на основе дискретно распределенных данных. Для этого используются различные методы геостатистического анализа, в основе которого лежит интерполяция, экстраполяция, аппроксимация данных и различные способы картографического изображения, которые основаны на классификации данных. Эта методика находит отражение, когда, например, строят псевдоизолинейную карту (поверхность плотности) распределения средневзвешенной цены 1 кв.м офисной недвижимости в городе. Моделирование позволяет на основе разных факторов осуществлять комплексную оценку территории для ее пригодности под определенные поставленные задачи, проводить районирование, ранжирование и кластеризацию. Моделирование на основе разновременных данных позволяет нам оценить динамику развития какого-либо явления и дать качественный прогноз [11].

Все геоинформационные системы применимо к гидрологии можно разделить на две основные группы: универсальные ГИС продукты (ArcGIS, MapInfo, ArcView и др.), которые используют специализированные программные модули и собственно гидрологические программы. Вот несколько примеров:

 StokStat 1.2 –программа для расчета статистических характеристик используемых в гидрологии;

trans2.0 –программа расчета трансформации зарегулированного стока в нижнем бьефе гидроузла. Вычисления выполняются на основе метода Калинина – Милюкова;

Прорыв – программа предназначена для расчета прохождения расходов воды на заданном расстоянии (в метрах) от плотины, на случай её прорыва;

Эколог гидрорасчёты – программный комплекс, предназначенный для ведения баз данных по основным гидрологическим характеристикам и выполнения гидрологических расчетов с помощью прикладных программ комплекса и многие другие [12].

В результате ГИС-анализа территории всегда получают серию качественных тематических карт, графиков и таблиц, которые доступны для понимания и с легкостью дают ответы на поставленные вопросы исследования. Поэтому визуализации уделяют большое внимание. Карты могут быть как двумерными, отражающими какое-то явление или синтез разных показателей, так и трехмерными, представляющими собой 3D-виртуальную модель местности; как статическими, так и в виде анимации.

Географические информационные системы находят все более широкое применение в гидрологии как для выполнения оперативных расчетов и оценки водных ресурсов, так и для изучения гидрологического режима водных объектов. Многие проблемы сбора, обработки и интерпретации данных, проектирования гидрологических сетей и подготовки предложений для принятия решений при широком использовании ГИС-технологии и персональных компьютеров могут разрешаться легче и эффективнее, чем это было до сих пор в гидрологической практике. Возможность ГИС-технологии оперативно представлять на цифровых или бумажных картах водные объекты совместно с их гидрографическими характеристиками, гидрологическими постами и данными измерений позволяет оперативно проводить автоматизированный комплексный анализ и интерпретацию материалов наблюдений для получения подробной картины происходящих процессов.

В условиях регулярного сокращения числа гидрологических станций и постов, как в России, так и во многих регионах мира информация о детальных наблюдениях на сети либо отсутствует, либо недоступна. В то же время существуют базы надежных цифровых географических и тематических данных. Используя эти базы, можно получить необходимые данные для расчета гидрологических характеристик.

ГИС-технологии используются практически для решения всех задач гидрологии.

Автоматизированное определение границ водосбора является важнейшим этапом. От правильности проведения границ зависит точность многих последующих измерений и расчетов. Как правило, на большую часть рек России границы водосборов уже определены и нанесены на схемы в соответствующих справочных изданиях. Особенно это важно для равнинных территорий, где границы водоразделов определены с низкой точностью. В любом случае перед началом картометрических работ необходимо проверить точность нанесения водоразделов. ГИС-технология позволяет сделать это с большой точностью и в короткое время. Если векторная граница региона или водосбора уже имеется, она берется за основу, если нет, то определяется по цифровой карте.

Гидрологические станции и посты изображаются на электронной карте в виде соответствующих внемасштабных условных знаков (символов). Несмотря на наличие в программном обеспечении множества условных знаков для изображения различных объектов на электронной карте, привычных символов для традиционного изображения гидрологических постов не существует. Поэтому был подготовлен проект палитры новых условных знаков, которыми, сохраняя традиционные начертания, можно отобразить все разнообразие гидрологических постов в зависимости от их ведомственной принадлежности, предназначения и широкого спектра выполняемых на них наблюдений.

Определение длин линий( гидрологической сети, дорог и др.) выполняется с помощью набора команд, заложенных в программном обеспечении ГИС. Длина по линии определяется как сумма длин всех входящих в нее отрезков. В частности, можно получить длину всей речной сети водосбора, каждого притока в отдельности или любого участка реки.

Измерение площадей (водосборов, озер, водохранилищ, ледников, болот, населенных пунктов и других объектов местности) также выполняется с помощью специальных команд ГИС-программ. Одновременно определяются периметры этих объектов и их центры тяжести.

По данным длин и площадей рассчитываются густота речной или дорожной сети, средний уклон реки и ее отдельных участков, залесенность, заболоченность, озерность и другие характеристики водосборов.

Многие ГИС-программы имеют функции, позволяющие работать в трехмерном пространстве. С их помощью строятся цифровые модели рельефа местности. По ним определяются средняя высота водосбора, его уклон, площадь с учетом рельефа, продольные и поперечные разрезы, объемы водных объектов.

Матрица направлений потоков, разделяющая водораздел на ячейки, показывает направления стока воды из каждой ячейки. Из восьми возможных направлений стока отбирается одно, имеющее максимальный уклон, которое и фиксируется в матрице направлений потоков.

Матрица аккумуляции потока.

В матрице каждая ячейка представляет сумму весов всех ячеек, дающих к ней сток.

Матрицы направления и накопления потока часто используются для разработки моделей речных водосборов с распределенными параметрами.

На основе вышеуказанных матриц может быть выполнено автоматическое очерчивание водоразделов, вычерчена синтетическая сеть водотоков и автоматически определены порядки водотоков.

Одной из наиболее интересных в научном и практическом плане является задача расчета зон затопления при наводнениях и паводках. Необходимо не только рассчитать, но и отобразить на карте зоны затопления в зависимости от уровней воды в контрольных створах.

Основной способ определения районов затопления в период паводка заключается в построении наклонных поверхностей, наиболее близко описывающих зеркало поднявшейся воды, и в дальнейшем определении линий пересечения этих поверхностей с цифровой моделью местности [13].

Опыт использования ГИС в гидрологии

Опыт использования ГИС в гидрологии не так долог, как в других областях географии. Но уже существует ряд примеров, которые могут быть взяты за основу для создания новых геоинформационных систем основных гидрологических процессов и явлений. Ниже будет рассмотрена одна из таких ГИС.

Геоинформационная система гидрологического назначения в Самарской области

Эта система позволила не только собрать воедино разобщенную информацию, но и на основе фактических и прогнозных данных оперативно представлять сведения для работы паводковых комиссий. Кроме того, система стала основой для осуществления мониторинга паводковой обстановки на территории области и выработки управленческих решений по ликвидации последствий паводков.

На первом этапе было принято решение разработать пилотный проект на один из районов Самарской области, и только после этого перейти к разработке ГИС гидрологического назначения на всю территорию области.

Изначально разработчиками был проведен обзор и анализ существующих отечественных и зарубежных разработок систем гидрологической направленности. Были также сформулированы основные требования к ГИС: система должна представлять собой комплекс программ для работы с картографической информацией, моделирования паводковой ситуации, хранения картографических и атрибутивных данных.

Проект выполнен на основе геоинформационных технологий с использованием программных продуктов ArcGIS от ESRI и ГИС ИнГео.

Картографическая основа пилотного проекта объединяет цифровые топографические карты и планы области, муниципальных образований, населенных пунктов.

При формировании базы данных использовались материалы, предоставленные Главным управлением ЖКХ Самарской области, Главным управлением по делам ГОЧС Самарской области, комитетом по земельным ресурсам и землеустройству Самарской области.

Для получения обобщенной гидрометеорологической информации использованы результаты многолетних наблюдений на гидрологических постах и метеостанциях, результаты рекогносцировочных обследований на территории области, представленные Приволжским межрегиональным территориальным управлением по гидрометеорологии и мониторингу окружающей среды (Самарский ЦГМС-Р), материалы ранее выполненных целевых проектов и программ [14].

Использование ортофотопланов позволило уточнить информацию о современном состоянии территории в полигоне зон затопления. В результате анализа были выделены области, требующие дополнительного изучения. В основном это застроенные земли, где идет активное градостроительное освоение водоохранных зон.

А затем на цифровые топографические карты были нанесены тематические слои, отражающие состояние объектов и статистическую информацию гидрологического назначения:

1. Гидрометеорологические условия района:

2. Основные характеристики и параметры гидрографической сети на территории района.

3. Данные о наличии, состоянии и владельцах гидротехнических сооружений на территории района.

4. Водный режим.

5. Мониторинг ледовых заторов и подрывных мероприятий.