Морфофункциональное состояние животных при стрессе

Г. Селье [54] в своей теории о стрессе подчеркивал значения гипофизарноадренокортикальной системы. Он первый установил, что под влиянием стресс-факторов в кровь сначала выделяется гормон аденогипофиза - АКТГ, а спустя - кортикостероиды, объединив наиболее характерные признаки в триаду:

гипертрофия надпочечников

уменьшение массы лимфатических органов;

кровоизлияние в желудке;

Позже он отметил, что главным в триаде является гипертрофия надпочечников, в особенности коркового (внешнего) слоя с усиленным выделением глюкокортикоидов.

Некоторые авторы [11] отмечают, что при долгодействующем влиянии стресс-факторов гипертрофия приобретает хронический характер. Так, при ежедневном мускульном напряжении (на протяжении 6-ти недель) автор подтвердил гипертрофию надпочечников и повышение секреции кортикостерона.

Позже Г.Селье [45] обнаружил, что при действии сильных стресс факторов, количество депонированного в гипофизе АКТГ сначала резко уменьшается, а через 2-3 часа его ресинтез восстанавливается.

По данным многих авторов [17] инкреция АКТГ усиливается при действии на животных стресс-факторов разной природы, которая обусловлена адаптивным влиянием гормона.

После введения АКТГ [8] в крови животных повышается концентрация кортизола. Очевидно, это связан с тем, что корковый слой клеток коры надпочечников находится под трофическим контролем гипофизарного кортикотропина (АКТГ), что стимулирует продукцию этими клетками таких стероидов, как кортизон [11].

Работами [49] установлено, что введение животным АКТГ оказывает содействие увеличению размеров всех зон коркового пласта надпочечников. В дальнейшем было установлено, что введение АКТГ вызовет гипертрофию клеток и ядер в корковом слое надпочечников, а у гипофизэктомированных животных кора надпочечников атрофируется.

Исследованиями [25] установлено, что при разных стресс-факторах секреция катехоламинов в мозговом пласте надпочечников увеличивается. Также при действии такого стресс-фактора, как холод, секреция адреналина возрастает.

Данными [38] установлена активизация системы,, гипофиз - кора надпочечников” при гипертрофии надпочечников и инволюции лимфоидных органов.

Было установлено [39], что при действии стрессорных факторов увеличивается объем кортикотропных клеток в аденогипофизе на 47%.

При стрессе [46] отмечали стимуляцию продукции АКТГ и пониженную активность половой системы, желез: щитовидной, инсулярного аппарата поджелудочной железы, а также снижение выделения соматотропного гормона.

Наблюдали [47], что в начальные периоды тренировки изменяется функция печени, в особенности отмечалась гипергалактозурия, снижение альбуминглобулинового коэффициента, увеличение содержания уробилина в моче.

По данным [25] при хроническом переутомлении поднимается углеводный, белковый и пигментный обмен в печени.

Исследованиями [19] установлено, что при действии стресс-фактора на животных уменьшается содержимое гликогена в печени, отмечается дезорганизация гранулярного эндоплазматичного ретикулума.

Наблюдениями [4] отмечено, что мускульная нагрузка также влияет на размеры гепатоцитов.

Таким образом, в отличие от коры надпочечников, масса печени при стрессе не увеличивается, а уменьшается. Это связано с тем, что в условиях хронического стресса, при переходе от стадии тревоги к стадии резистентности, ряд катаболических реакций печени заменяются анаболичными.

Работами [38] установлено, что через 2 часа после начала действия стресс фактора повышается разрушение эритроцитов в ретикуло-эндотелиальной системе, внеклеточный эритродиарез и откладывание гемосидерина в организме.

По данным [33] при действии стресс-фактора наблюдались кровоизлияния в селезенке, кишечнике, мускулатуре, отмечалась водянистость и ноздреватость мышечной ткани, а также повышение в ней содержимого молочной кислоты и снижение Рн.

Исследованиями [49] установлены значительные изменения содержимого воды в мышечной ткани крупного рогатого скота при увеличении срока перед забойной передержки.

Исследованиями [27] установлено, что электрооглушенние животных при забое, вызовет уменьшение содержимого гликогена в мышечной ткани.

По данным [35] подтверждается факт, когда при стрессе поднимается функциональное состояние не только отдельных органов и тканей, но и поднимается внутренняя среда организма (гомеостаз).

Таким образом, как видно из приведенных литературных данных, действие стресс-фактора на организм в целом и отдельные органы и ткани вызовет не только функциональные изменения в организме животных, но и морфологические.

Обнаруживаются изменения морфофункционального характера щитовидной железы, половых желез, инсулярного аппарата поджелудочной железы, аденогипофиза и т.п., что в целом отрицательно отражается на физиологическом состоянии всего организма животного.

Многими исследователями установлено, что перед забойные стрессы влияют на качество мяса.

После забоя животных в мышечной ткани проходит ряд биохимических процессов, которые имеют аутолитический характер. После 24-72 часа в зависимости от температуры окружающей среды аэрации и других факторов проходит созревание мяса.

Отечественным основоположником теории созревание мяса является И. А. Смородинцев, который считает, что изменение свойств мышечных белков проходит в результате распада небелковых компонентов и в первую очередь, за счет накопления продуктов гликолиза. В организме животных гликолиз с образованием молочной кислоты (лактата) обеспечивает энергией скелетные мышцы при интенсивной работе, если ограниченно поступление кислорода к митохондриям. При этом, содержимое молочной кислоты в мышцах имеет существенное значение, так как его количество определяет величину концентрации водородных ионов, которое есть показателем, который указывает на стадию созревания мяса и его сохранение.

Кроме этого, следует отметить, что мясо получено от животных, которые были в стрессорном состоянии -бледное, водянистое (раlе sоft, exudative pork) [50]. В таком мясе гликоген быстро превращается в молочную кислоту, в результате чего на протяжении 45 минут величина концентрации водородных ионов становится ниже нормы (норма -6,0), а температура в толще мышц повышается выше допустимой (норма 40-41°С). Это поясняется тем, что в анаэробных условиях гликогенолиз протекает с выделением тепла. В таких условиях мясо становится бледным, водянистым и превращается в грубоволокнистую структуру.

Очень важно, отмечают некоторые исследователи, чтобы гликогенолиз протекал медленно. Кроме этого количество гликогена в мышечной ткани зависит от способа транспортирования.

Некоторые ученые [49] предполагают, что интенсивный откорм молодняка мясных пород есть разновидностью стресса, а потому они рекомендуют оценивать качество мяса не только по химическому анализу, но и определять его физиологические и органолептические качества.

Исследованиями [32] установлено, что жирнокислотный состав липидов мышечной ткани в разные периоды перед забойного удержания животных значительно изменяется. При этом выявлено резкое снижение количества мононенасыщенных жирных кислот и увеличение количества полиненасыщенных, а также суммы насыщенных жирных кислот.

Некоторыми данными доказана зависимость сезонности в вопросах качества мяса. Было отмечено, что в теплые месяцы года мясо имеет более светлую окраску в сравнении с зимними.

Было установлено, что запасы гликогена в мышцах бычков после 24- часовой голодной выдержки уменьшались в 2 раза, а при 48-часовой в 7 раз в сравнении с начальной. Кроме этого, было отмечено, что кастраты меньшее испытывают действие стресс-факторов, в их мышечной ткани содержимое гликогена уменьшается в меньшей степени. Также отмечалось, что применение аминазина оказывало содействие снижению потерь мяса, сохранению содержимого гликогена в мускульной ткани, при этом, показатель Рн в мышцах находился в границах нормы.

Экспериментами установлена высокая эффективность антистрессовой обработки животных аминазином при транспортировании, которое обеспечивает долгодействующее сохранение мяса при температуре О-2°С.

Адаптация организма к действию стресс-факторов наступает либо в результате изменения физиологических констант с сохранением уровня метаболических процессов (так называемая физиологическая адаптация), либо за счёт альтерации гомеостаза обмена веществ (так называемая биохимическая адаптация). При этом, как отмечает В. А. Шидловский (1982), быстрая адаптация реализуется преимущественно посредством физиологических механизмов, а медленная - за счёт биохимических процессов, на основе которых происходят морфо-функциональные перестройки организма [22]. В конечном счёте, выживание организма осуществляется путём приспособительных изменений как соматовегетативных функций, так и самих процессов метаболизма.

При рассмотрении механизмов регуляции на любом уровне необходимо иметь ввиду, что для саморегуляции требуется наличие свободной энергии, поскольку деятельность организма поддерживается непрерывной тратой энергии, источниками которой в клетках являются системы переноса электронов, цикл Кребса, гликолиз и обмен фосфорных соединений. С точки зрения энергетики, организм постоянно находится в состоянии устойчивого неравновесия. Энергетический обмен организма представляет собой сложную систему биохимических реакций, протекающих в соответствии с первым законом термодинамики и направленных на восстановление энергетического потенциала в процессе работы. Исходя из наиболее общего закона биологии -закона Бауэра (1935): «максимум эффекта внешней работы в ответ на полученную из внешней среды единицу энергии», следует, что чем выше коэффициент полезного действия работающей системы, тем более она адаптивна.

Изучение энергетического обмена представляет большой интерес, так как знание энергетической цены резистентности при развитии адаптационных реакций на разных уровнях позволяет избрать в каждом случае оптимальный уровень, а также необходимое биохимическое сопровождение для оптимизации энергетического обмена [27]. Основным источником энергии в организме служит аденозинтрифосфорная кислота (АТФ). Высвобождение энергии из этого вещества происходит в результате гидролиза его высокоэнергетической фосфатной связи. Энергия АТФ используется организмом для всех его процессов - синтеза различных веществ, физической работы, теплопродукции, регенерации и т.д. В связи с этим в организме должна функционировать такая система, которая бы восстанавливала и поддерживала определённый уровень АТФ. Основная масса АТФ образуется в процессе фосфорилирования в окислительной цепи митохондрий и только незначительная часть её синтезируется при субстратном фосфорилировании в случае недостаточного обеспечения клетки кислородом. Окислительным процессам в митохондриях предшествуют сложные превращения энергетических субстратов на соответствующих участках метаболизма. для углеводов - это гликолиз, для жиров - р-окисление жирных кислот, для белков - дезаминирование аминокислот. Начиная с образования ацетил-коэнзима А, дальнейшее их превращение локализовано в цикле Кребса.

Изменение энергетического обмена в условиях напряжения организма реализуется на всех уровнях организации биосистемы - от организменного до клеточного [17]. Установлено, что в организме, в целом, 50% общей энергии основного обмена получается за счет окисления углеводов, а 50% - за счет окисления жиров. При действии чрезвычайных раздражителей энергообеспечение физиологических процессов существенно перестраивается. На первых этапах оно идет за счет использования углеводных ресурсов[27].

При стрессе происходит мобилизация многих физиологических систем организма, в результате деятельности которых сопротивляемость его к стресс факторам увеличивается. Возникновение генерализованного адаптационного синдрома (ГАС) Селье связал с адаптацией, с повышением сопротивляемости организма к действию поврежденных факторов. Селье считает, что стрессорный ответ реализуется следующим образом: неспецифический стимул (нервный импульс, химическое вещество или недостаток необходимого метаболического фактора) активирует «первый медиатор», который еще не идентифицирован. Этот фактор стимулирует определенные нейроэндокринные клетки подбугорной области, которые трансформируют первые сигналы в кортикотропный гормональный рилизинг-фактор (КРФ) - гуморальный передатчик, достигающий передней доли гипофиза. В основе стресса лежит напряжение гипоталамо-гипофизарно- адренокортикальной системы [54].

Сразу после начала действия стресс-фактора из передней доли гипофиза выбрасывается АКТГ, стимулирующий кору надпочечников, вследствие чего в кровь выделяется значительное количество кортикостероидов. Глюкокортикоиды активируют глюконеогенез, который обеспечивает организм запасами готовой к использованию энергии, столь необходимой для адаптации в стрессовых ситуациях, вместе с тем угнетая активность гексокиназы и глюкозо-6-фосфат дегидрогеназы.

Наблюдают отставание ресинтеза АТФ от ее использования для возрастающей функции нервных центров, мышц и других систем. В период перехода от состояния покоя к функциональной активности в скелетных мышцах происходят значительные изменения интенсивности тканевого дыхания и генерации адениловых нуклеотидов. Это связано с частичным разобщением между дыханием и фосфорилированием, что приводит к отрицательному балансу АТФ [39]. Суммарная концентрация АТФ и КФ в мышцах при физических, нагрузках снижается и повышается содержание АДФ и неорганического фосфора.

В крови, в результате возбуждения симпатического отдела нервной системы после физической нагрузки, пропорционально нагрузке увеличивается концентрация норадреналина. Норадреналин и адреналин активизируют гликолиз и гликогенолиз через 3,5 циклический АМФ, являющийся медиатором, и способствуют увеличению концентрации глюкозы в крови, что вызывает возбуждение гипоталамических центров, регулирующих секрецию инсулина [23]. По данным Л. Е. Панина [28] при 20 минутах плавания крыс снижается активность гексокиназы обеих типов в сердечной мышце.

В печени отмечают снижение количества гликогена и увеличение активности пируваткиназы при физических нагрузках, а в крови - увеличение концентрации глюкозы и пирувата. даже при кратковременной физической работе в печени и мышцах наблюдается активация гликолиза [21].

При значительной гипоксии или аноксии снижается концентрация АТФ, КФ, гликогена в миокарде, скелетных мышцах, печени и головном мозге, и одновременно повышается концентрация неорганического фосфора, пирувата и лактата [23]. Увеличивается освобождение норадреналина из симпатических нервных окончаний, что способствует активации гликолиза. Норадреналин стимулирует систему гликолиза через аденилатциклазу. Аноксия, сопровождающаяся дефицитом фосфорных соединений, богатых энергией, накоплением лактата, способствует быстрой и значительной активации синтеза фосфолипидов в клеточных мембранах, которые потенцируют эффект естественных активаторов фермента аденилатциклазы, обеспечивающей образование циклического 3,5 АМФ из АТФ [50]. Катехоламины, активируя фосфорилазу и изоцитратдегидрогеназу [20], интенсифицируют гликогенолиз и пропускную способность цикла Кребса.

Таким образом, различные экстремальные факторы, воздействующие на организм животных, вызывают развитие стрессовой реакции, что приводит к дефициту энергообеспечения и мобилизации энергетических ресурсов. Это служит сигналом для активации генетического аппарата клеток самых различных органов. При этом основное значение придают АДФ и АМФ, креатину, неорганическому фосфору, некоторым аминокислотам в активации генома при мышечной деятельности [32] и величине потенциала фосфорилирования и отношению креатин/ креатинфосфат [24].

В процессе адаптации к физическим нагрузкам, холоду и гипоксии также установлено увеличение количества митохондрий в клетках [36], что повышает способность мышц утилизировать пируват, предотвращает увеличение концентрации лактата в крови, обеспечивает мобилизацию и использование в. митохондриях кислот, что влечет за собой максимальную степень сопряжения окисления и фосфорилирования и наибольший возможный выход АТФ на единицу потребляемого кислорода[23].

Факторы внешней среды, к которым адаптируется организм, действуя различными путями, в конечном результате приводят к одному и тому же общему комплексу сдвигов - дефициту энергообеспечения, увеличению потенциала фосфорилирования и мобилизации энергетических ресурсов. Все это является сигналом генетическому аппарату клеток к усилению биосинтеза нуклеиновых кислот и белков митохондрий. Мощность системы митохондрий увеличивается и осуществляемая ими выработка АТФ на единицу массы тканей возрастает, что способствует общей активации биосинтеза и образования всех клеточных структур, развитию процесса адаптации и возникновению фазы резистентности [24].

Многократно или постоянно действующие факторы, вызывающие повышение резистентности организма, создают основу для перекрестной адаптации. Так, например, установлено, что адаптация к физическим нагрузкам способствует развитию приспособления к гипоксии, рентгеновскому облучению, разности температур и др.[6].

Однако, такие пути повышения резистентности длительны и практически не приемлемы в животноводстве. Одним из важнейших путей быстрого повышения резистентности животных служит применение адаптогенов. «...действуя через циклическую 3,5 АМФ или иные механизмы, выступая в роли индукторов генетического аппарата, они смогут вызывать активацию образования митохондрий и формирование других изменений, составляющих структурную основу адаптации. В итоге можно будет получить увеличение резистентности организма к определенным факторам заранее - до встречи с этими факторами» [23].

Проблема стрессов в животноводстве и обусловленные ими значительные экономические убытки, которые особенно проявляются в условиях промышленных технологий, ставят в ряд актуальных научно-практических вопросов разработку эффективных способов профилактики негативного влияния стресс-факторов на физиологическое состояние и продуктивность сельскохозяйственных животных. Одними инженерно-техническими методами не всегда удается сберечь здоровье животных, обеспечить их высокую продуктивность и уменьшить затраты кормов на единицу продукции. Поэтому, в условиях действующих технологий, когда стрессовых ситуаций избежать невозможно, большое значение имеет применение химических и гормональных препаратов, витаминов, антибиотиков, антистрессовых кормовых добавок, адаптогенов и нейролептиков.

Среди химических веществ часто применяется, как стрессовый препарат янтарная кислота или ее соль - сукцинат натрия. По данным авторов, сукцинат характеризуется высокой стойкостью к окислению в тканях, низкой стоимостью, выраженным антистрессовым действием. Янтарная кислота, как известно, интенсивно окисляется в цикле трикарбоновых кислот, который занимает центральное положение в синтeзе АТФ в клетке. Установлено, что при скармливании животным сукцината в их тканях увеличивается отложение гликогена, усиливается тканевое дыхание, окислительное фосфорилирование, моторное и секреторная функция кишечника.

Положительное влияние на гемопоэз, обменные процессы, иммунный статус и рост молодняка крупного рогатого скота в условиях стресса получено при введении доцецония и карбоксилазы.

Ряд авторов докладывает об антистрессовом влиянии комплексного препарата, в состав которого входит глюкоза, витамины А, Д, Е и окситетрациклин. Лучший эффект при профилактике стрессов у животных проявляется при использовании витаминов группы В вместе с антистрессовыми препаратами. Установлено, что введение витаминов В1, В2, В6 в комплексе с аминазином повышает эффективность антистрессовой обработки, проявляет стимулирующее влияние на обмен углеводов, окислительное фосфорилирование и образование макроэргов. Введение витаминов А и Д в комплексе с микроэлементами (кобальтом, медью, йодом) приводит к активации клеточных и гуморальных факторов защиты их организма при стрессе.

По данным авторов введение животным различных препаратов женьшеня и элеутерококка при стрессах приводит к увеличению количества эритроцитов и гемоглабина в крови, стимулирует минеральный, углеводный и белковый обмен в организме, повышает фагоцитарную активность лейкоцитов, общую резистентность и бактерицидное действие сыворотки крови. Продолжительное введение животным элеутерококка усиливает в печени и мышцах окислительное фосфорилирование, приводит к повышению количества сахара и неорганического фосфора в крови животных.

Действие разных адаптогенов на организм поросят при отлучении изучал В. С. Бузлама. Результаты исследований показали, что экстракт элеутерококка проявляет стимулирующее влияние на рост поросят.. При этом было установлено, что экстракт тормозит инкрецию кортикостероидов и нормализует метаболические реакции гипофизадреналиновой системы.

Хорошие адаптогенные действия по данным авторов проявляют также фенибут, кватерин, фумаровая кислота. Установлено, что при добавлении в рацион фумаровой кислоты проявляется ГАМК-эргический эффект, стимулируются энергетические процессы, ингибируется ПОЛ и повышается резистентность.

Адаптогены, действуя на различные биохимические механизмы, влияют на функциональное состояние гипофизарно- адреналиновой системы при стрессе. Они предупреждают стрессовую гипертрофию надпочечников и приводят к уменьшению количества кортикостероидов в крови, предупреждают развитие эозинопении и нейтрофильного лейкоцитоза. Адаптогенные препараты усиливают метаболизм аскорбиновой кислоты и холистерина при стрессе.