Полевые комплексные физико-географические исследования (2)

Законченный цикл экспедиционных комплексных физико-географических исследований включает в себя три этапа работ:

подготовительный,

полевой

камеральный.

По продолжительности эти этапы традиционно относились друг к другу примерно как 1:1:2.

В последние десятилетия проявилась тенденция к сокращению сроков полевых работ и удлинению подготовительного и камерального периодов.

Этот процесс вполне закономерен. Он отражает растущую техническую оснащенность экспедиций и дальнейшее совершенствование методов и приемов полевых работ. Все больше увеличивается объем информации, которую можно использовать в процессе подготовки к полевым работам (более подробные и качественные топографические карты, аэрофото- и космические материалы, материалы предшествующих отраслевых и комплексных исследований); расширяется программа камеральных работ за счет усиления их аналитической части, применения математических методов анализа полевой документации, использования компьютеров для математической обработки материалов и построения различных графических моделей, включая составление ландшафтных карт и карт физико-географического районирования.

Соотношение этапов исследования по времени может меняться и в зависимости от задач исследования, и масштаба работ. Так, по А. А. Видиной, для крупномасштабного ландшафтного картографирования подготовительный период (предполевой), полевой и камеральный (послеполевой) относятся друг к другу в среднем как 2:1:3.

Это значит, что примерная доля полевого периода, традиционно составляющая 25 % общего объема работы, в условиях более высокой обеспеченности различными материалами при крупномасштабном картографировании может составлять уже около 15 %. Вероятно, среднемасштабное ландшафтное картографирование, а тем более мелкомасштабное, может производиться с еще более сокращенным полевым периодом.

Постановка задачи, изучение литературных и фондовых материалов

Началом исследования является получение или самостоятельная постановка задания, которое достаточно ясно определяет основную цель исследования и разработку программы.

Далее производится поиск (мобилизация) материалов, касающихся избранной территории и направления работ. Все обнаруженные опубликованные и фондовые источники фиксируются на библиографических карточках (или иным способом) еще до начала полевых работ, чтобы избежать ненужного дублирования и более целеустремленно организовать собственные исследования. Большую помощь может оказать микрофильмирование, ксерокопирование, сканирование, создание компьютерной базы данных, содержащей графические, цифровые и текстовые материалы. Для непосредственного фиксирования полевого материала уже начали применяться портативные компьютерные аппараты Notebook («Блокноты» или «Записные книжки»), в том числе с дополнительными устройствами для автоматической фиксации координат точек, удобные как для камеральных работ, так и для поля.

После мобилизации материалов производится их изучение. Особое внимание уделяется выявлению закономерных связей между геологическим строением, включая тектонику, и рельефом; рельефом, климатом и водами; рельефом, литологией и почвами; почвами и растительностью и т.д. Помимо обычного для любой работы конспектирования или копирования источников производятся сопоставления, как указано выше, и, таким образом, уже в подготовительный период выявляются типичные для территории природные территориальные комплексы (ПТК), а при наличии соответствующих сведений отмечается и их хозяйственное использование.

При изучении литературных и фондовых источников разного времени и разных авторов неизбежно встречаются противоречивые данные. Такие случаи берутся на заметку для полевой проверки.

В составляемых конспектах важно фиксировать не только наличие на изучаемой территории тех или иных объектов (природных комплексов, форм рельефа, типов почв, характерных пород, видов растений и т.д.), но и их физиономическую характеристику, чтобы узнавать их в поле. Необходимый для полевых работ картографический материал с отображением различных компонентов природы или природных комплексов следует отсканировать либо ксерокопировать, сфотографировать или скопировать на кальку, если нет возможности взять в поле оригинал. Предпочтение отдается более новым картам и картам по масштабу более близким к масштабу исследования. Впрочем, старые источники нередко представляют интерес, особенно при рассмотрении изменения природной среды в результате хозяйственной деятельности человека. При этом о достоверности источников, их объективности и точности передачи фактического материала приходится помнить всегда - и при использовании старых источников, и при знакомстве с новыми материалами.

Вместо копирования картографического материала можно рекомендовать также «укладку» этого материала на основы, приготовленные для работы в поле. Это занятие более сложное, чем простая копировка, но целесообразное, так как сводит разрозненные материалы к одному масштабу, облегчая их сопоставление. На эти же карты можно наносить некоторые данные, взятые из текстовых описаний. Все это можно с успехом делать с помощью компьютера. Многие материалы уже введены в геоинформационные системы. Имеются специальные программы для их обработки.

Перед работой в поле полезно ознакомиться с гербарием растений, образцами почв и пород, характерных для будущего района исследования.

Завершением предполевого изучения материалов может явиться предварительная ландшафтная карта или карта физико-географического районирования, составленная в камеральных условиях и позволяющая более целеустремленно проводить полевые исследования.

Процесс составления ландшафтной карты - это многократно повторяющиеся циклы анализа и синтеза: анализ компонентов и процессов и синтез природных территориальных комплексов как целостных систем с постоянной корректировкой их контуров.

Работа с топографическими, аэрофото-, космическими и другими материалами для предварительного выделения ПТК

Рельеф является главным фактором перераспределения тепла и влаги на поверхности Земли. К литогенной основе, и, в первую очередь, к рельефу приспосабливается биота, от него же зачастую прямо зависит и характер почвообразующих процессов. Поэтому границы ПТК очень часто совпадают с границами форм или элементов форм рельефа. Отсюда и особый интерес к анализу топографической карты при подготовке к ландшафтному картографированию.

Основой составления предварительной ландшафтной карты является перевод изображения рельефа поверхности Земли с помощью горизонталей, как это делается на топографических картах, в другую модель - в изображение рельефа контурами, свойственное большинству отраслевых карт. Затем производится наполнение этих контуров содержанием и составление легенды. Контуры вырисовываются, в первую очередь, по топографической основе, а также по аэрофото- и космоснимкам и корректируются по отраслевым картам. По этим же материалам раскрывается, насколько это возможно в камеральных условиях, и их содержание.

Работа с топографическими картами

Изображение рельефа горизонталями, применяемое на топографических картах, - замечательный способ передачи объемов на плоскости, своего рода непрерывное изображение, тогда как карта форм рельефа в контурах - чисто плоскостное дискретное изображение. По ней сложнее оценить динамику, особенно гравитационных (эрозия, сток) и других процессов. В идеале на ландшафтной карте лучше было бы совместить оба способа рисовки рельефа, но это трудно осуществить по техническим причинам, и, прежде всего, потому, что ландшафтная карта сама по себе часто получается очень загруженной и трудно читаемой.

Весьма полезно перед началом работы с топографическими картами просмотреть «Альбом изображения рельефа на топографических картах» (1968), где каждый фрагмент карты сопровождается еще стереопарой аэрофотоснимков и текстом. Примечательно, что по топографической карте в сочетании с аэрофотоснимками зачастую хорошо читается не только строение поверхности, но и состав пород, генезис отложений и форм рельефа.

Краткое содержание метода поконтурного изображения рельефа

Сначала на топографической основе выделяют речную и эрозионную сеть: оконтуривают речные долины, овраги, балки, лощины. Затем оставшиеся участки междуречий разделяют по степени крутизны на контуры с примерно одинаковым сгущением горизонталей.

Как показывает практика, труднее всего дается первый шаг: «оторваться от горизонтали», т.е. понять, что контур эрозионной формы всегда пересекает горизонтали, а не идет вдоль них.

Последующее изложение является ключом к пониманию азов техники ландшафтного картографирования. Поэтому рекомендуется, прочитав его, попробовать самостоятельно выполнить подобную работу, при необходимости снова возвращаясь к изучению текста и иллюстраций. Полезно иметь несколько вариантов учебных карт на плотной бумаге, где мягким карандашом можно было бы опробовать разные варианты решений. Этот текст должен быть проработан досконально, включая все подписи к рисункам.

Удобнее всего начинать учиться рисовать контуры, во-первых, на картах крупного масштаба 1: 10000 (или крупнее), в крайнем случае - на 1:25 000 и, во-вторых, на картах с изображением эрозионного рельефа, где хорошо показана балочная сеть и ярко выражены уклоны.

Для учебных занятий обычно готовят несколько вариантов карт-бланковок, где вся топографическая нагрузка снята, кроме рельефа в горизонталях. Таким образом, снимаются все факторы, кроме эрозионного. Это делается, чтобы быстрее приобрести навыки формальной рисовки сначала без привлечения других отраслевых карт и аэрофотоснимков. Научиться «чувствовать рельеф» полезно для географов всех специальностей.

«Решив» такую задачу на нескольких фрагментах топокарт, т.е. «выловив» и оконтурив все эрозионные формы и разделив остальную территорию по степени крутизны, можно начать привлекать аэрофото- и различные отраслевые материалы, попытаться дать характеристику каждого полученного выдела, раскрыть его содержание. С этого момента и начинается процесс анализа-синтеза - искусство оптимального воплощения в картографическую модель всех своих знаний. Скорее всего, первоначальную рисовку контуров при этом придется несколько изменить.

Формальная рисовка ландшафтных контуров не столь уж сложна (при приобретении первоначального навыка), и поддается автоматизации. Однако, на наш взгляд, только карты самого крупного масштаба дают более или менее реальное изображение рельефа и соответственно выделенных контуров ПТК. На картах же среднего и мелкого масштабов генерализация топографической основы и рисовка по ней контуров природных компонентов или комплексов приводят к искажению как характера самих контуров, так и соотношения площадей различных видов картографируемых природных объектов.

Влияние рельефа на формирование ПТК, как указывалось выше, заключается в первую очередь в перераспределении им влаги и тепла.

Поэтому, если при разделении склонов на части по крутизне поверхности встречаются случаи, когда какой-то значительный участок склона мог бы быть выделен по крутизне в определенную категорию, но в его средней части имеется небольшая полоска более пологого склона, выделять эту полоску отдельно нецелесообразно, так как стекающая по поверхности влага не успеет существенно уменьшить скорость движения и как бы проскочит эту полоску. Также нецелесообразно выделять отдельную небольшую полоску склона с большей крутизной, оказавшейся внутри значительной его части, выделяемой в категорию с меньшей крутизной.

Экспозиционные различия по теплообеспеченности на крутых склонах проявляются ярче, чем на пологих, на южных (и юго-западных) и северных (и северо-восточных) лучше, чем на западных и восточных. Поэтому при составлении предварительной карты ПТК крутым склонам северной и южной экспозиций следует давать разные номера. Выпуклые склоны как на профиле, так и плане отличаются от вогнутых по увлажнению, и это тоже надо учитывать при рисовке контуров ПТК.

Мы рассмотрели лишь частные примеры выявления контуров форм и элементов рельефа в условиях эрозионных равнин средней полосы Русской равнины при крупном масштабе картографирования. В иных физико-географических условиях возникнут новые вопросы. Например, в условиях холмисто-грядового моренного рельефа, чередующегося с водно-ледниковыми поверхностями, где эрозионная сеть может быть слабо развитой, для первого, наиболее общего разграничения территории на разные природные комплексы А. А. Видина рекомендует раскрасить карту в горизонталях по разным высотным уровням. И действительно, этот прием позволяет без особого труда разобраться в сложном «переплетении» моренных и водно-ледниковых образований. На моренных холмах могут выявиться вершинные поверхности, полого-наклонные или с мелкими всхолмлениями, а на водно-ледниковых равнинах будут видны террасовидные поверхности разных уровней. Впрочем, этот прием ярусной раскраски по горизонталям может оказаться полезным и на эрозионно-расчлененной территории. В обоих случаях это позволяет выявить ярусность ПТК, в частности склоновую микрозональность.

От масштаба карты зависит и ранг ПТК, выделяемого в самостоятельный контур. Например, на карте масштаба 1:10 000 в пойме более или менее значительной реки хорошо читается по горизонталям гривистый рельеф, и каждую гриву и межгривное понижение (урочища) можно выделить контуром. На картах масштаба 1: 25 000 это уже не всегда возможно и часто выделяется целиком участок гривистой поймы, т.е. целая совокупность взаимосвязанных урочищ. На карте же масштаба 1: 200 000 даже целиком всю пойму практически невозможно проследить по горизонталям, так как сечение горизонталей 20 м, а относительные превышения террас над поймой могут составлять 5 - 10 м.

В этом случае помогают другие косвенные признаки, читаемые по топографической карте, например граница луга и пашни (хотя пойма может тоже оказаться распаханной, а терраса луговой). Иногда вдоль реки на карте показана заболоченность, позволяющая «нащупать» пойму. Может помочь и размещение населенных пунктов, которые, как правило, находятся вне поймы. Во всяком случае, многоэтажной застройки на пойме не будет нигде, если только это не искусственная насыпь на бывшей пойме. Шоссейная дорога «без нужды» также не пойдет по пойме, а пойдет по террасе или коренному берегу. Если же она пересекает речную долину, то ее отрезок на пойме выделится знаком насыпи. Скотный двор или водонапорная башня в пойме реки почти однозначно отмечают островок надпойменной террасы, не выразившийся в горизонталях карты и т.д.

Рисовка контуров ПТК по топографической основе чаще всего идет параллельно с работой над аэрофото- и космоматериалами, а также над отраслевыми картами, поэтому многие вопросы снимаются. Отметим лишь, что при работе с топографическими картами среднего и мелкого масштабов хорошо иметь и более крупномасштабные карты для более уверенной и точной рисовки.

Работа с аэрофото- и космическими материалами и отраслевыми картами

Использование аэрофотоматериалов можно рекомендовать как для крупного, так и для среднего масштабов исследований. Космические снимки удобны для работ мелкого и среднего масштабов, а при условии их увеличения и для крупного.

Обычно при крупномасштабных исследованиях используются черно-белые контактные отпечатки аэрофотоснимков разных масштабов (чаще 1:17 000 и 1:12 000, но возможны и другие - от 1: 5000 до 1:60 000) в зависимости от наличия в фондах Госгеонадзора готовых негативов, так как заказывать специально новую аэрофотосъемку часто невозможно из-за финансовых соображений. Выбираются материалы более свежих полетов, лучше начала лета, когда контрастность в увлажнении разных ПТК фиксируется наиболее четко.

На аэрофотоснимках обычно хорошо просматриваются типы местностей со специфичной для них урочищной структурой. Можно распознать на них и подурочища, и отдельные крупные фации. На космических снимках, охватывающих большую территорию, видны уже разные ландшафты, приуроченные к определенным тектоническим структурам, или, может быть, «просвечивают» тектонические структуры через разный рисунок ландшафтов.

По возможности используются цветные или спектрозональные снимки, особенно для дешифрирования растительности, а также (дополнительно) аэрофотоснимки прежних лет разной давности, по которым можно проследить скорость протекания некоторых процессов (например, эоловых, эрозионных, заболачивания, зарастания, смену угодий, изменений в размещении населенных пунктов и т.д.). Практикуется также просмотр парных снимков под стереоскопом. На снимках выявляются контуры, отличающиеся по форме, фототону, рисунку (структуре) фотоизображения, его тени.

Выявляются, в первую очередь, естественные границы, связанные с изменениями природного характера. Резкая смена фотоизображения по прямолинейным границам часто отражает результаты хозяйственной деятельности человека (смену угодий, полей севооборота и др.). Такие границы интересны как границы производных (антропогенных модификаций) фаций и урочищ, обычно они тоже фиксируются, но иным способом, чем природные (например, точечным пунктиром).

При дешифрировании используются как прямые признаки объектов, непосредственно видимые на аэрофотоснимке, так и косвенные, базирующиеся на закономерных связях, существующих в ПТК. Например, если на террасе отдешифрирован сосновый лес, то вполне вероятно, что она песчаная. Или, если распаханный участок вблизи бровки балки имеет более светлый тон, чем соседние, то, скорее всего, его почвы значительно эродированы, и т.д.

Зачастую изменение рисунка либо тона вполне объяснимо и соответствует или изменению растительности, или увлажнения, или же слагающих поверхность пород, или сразу нескольких компонентов, в чем можно убедиться, сверившись с топокартой и (или) отраслевыми природными картами. Но нередко в камеральных условиях объяснить причину изменения характера изображения на аэрофотоснимке не удается, и расшифровка его откладывается на полевой период.

Результаты дешифрирования вырисовывают на матовой пленке, наложенной поверх аэрофотоснимка, мягким простым карандашом и (или) гуашью. Можно сразу переносить их на топооснову, дополняя или уточняя те контуры, которые на ней уже были отрисованы по горизонталям как формы и элементы форм рельефа. Параллельно составляют табличную (рабочую) легенду, где для каждого выделенного и пронумерованного контура раскрывают его основное содержание: местоположение и рельеф, породы, увлажнение, почвы, растительность. В примечании указывают, необходимо ли полевое уточнение свойств ПТК, и чего именно (опознание слагающих пород, почв и т.д.).

Составление предварительной ландшафтной карты среднего масштаба отличается меньшей степенью детальности дешифрирования. Известные трудности возникают при этом в связи с разномасштабностью материалов. Как правило, масштаб аэрофотоснимков намного крупнее составляемой карты. В связи с этим удобнее пользоваться не отдельными контактными отпечатками, а накидными монтажами или, еще лучше, фотосхемами, либо увеличенными космоснимками (и космопланами с нанесенными на них горизонталями), позволяющими обозревать одновременно большую территорию, выявлять на ней природные территориальные комплексы, и укладывать их на топографическую основу избранного масштаба или на наложенную на нее кальку (пленку). Просмотр всей массы контактных отпечатков аэрофотоснимков под стереоскопом в этом случае практически невозможен из-за слишком большого их количества. Однако в отдельных случаях это вполне целесообразно, например, при выявлении границ, совпадающих с перегибами склонов коренных берегов речной долины, террас и др.

Как правило, в учебных планах физико-географов-ландшафтоведов есть специальные курсы по дешифрированию аэрофото- и космических снимков, поэтому мы не будем на этом останавливаться.

При любом масштабе работ для наполнения контуров конкретным содержанием одновременно с анализом аэрофото- и космоматериалов используются имеющиеся по изучаемой территории специальные (компонентные) карты: почвенная, четвертичных отложений, дочетвертичных отложений, структурно-тектонические, гидрогеологические, инженерно-геологические, геоморфологические, карты (планы) лесной таксации и другие, показывающие растительный покров. Однако растительность - компонент, как правило, наиболее измененный человеком. Эти изменения могут быть недолговечны и случайны, а сами карты (и планы) часто слишком мозаичны, что затрудняет их использование. Поэтому материалы по растительному покрову территории используются уже после всех других. Особое внимание обращается на типы местообитаний, для чего пользуются шкалами Л. Г. Раменского, В. В. Погребняка (в переработке А. А. Видиной), экологическими рядами, с тем, чтобы за сегодняшней картиной сильно измененной растительности разглядеть ее коренные варианты.

В случае несоответствия контуров специальных карт с характером фотоизображения предпочтение отдается аэрофотоматериалам, однако возникший вопрос фиксируется для дальнейшего выяснения.

Составленные по аэрофото- и (или) космоматериалам и специальным картам (геологическим, геоморфологическим и др.) предварительные ландшафтные карты имеют, как правило, довольно хорошую рисовку контуров, но схематичную легенду, еще недостаточно полную и точную по содержанию.

Однако, несмотря на всю неполноту, легенда предварительной ландшафтной карты не должна представлять собой хаотичный перечень контуров различного содержания. Уже в подготовительный период надо стремиться систематизировать материал, произвести первоначальную классификацию ПТК, соблюдая структурно-генетический принцип и избегая логических ошибок.

В процессе полевой работы основная задача заключается в раскрытии содержания выявленных контуров (по их типологическим группам) и в выяснении спорных вопросов, возникших при анализе разнородных материалов. Границы же контуров ПТК обычно мало изменяются после полевых работ, так как аэрофото- и космоматериалы позволяют положить их на карту даже с большей степенью точности, чем при непосредственном наблюдении в поле.

По предварительной ландшафтной карте еще до выезда в поле рекомендуется разработать сеть маршрутов и наметить точки комплексных описаний. А. А. Видина считает возможным для крупного масштаба работ (1: 10 000 - 1: 25 000) в лесной зоне средней полосы России задавать одной рабочей паре (специалист и рабочий или коллектор) на однодневный маршрут протяженностью 2 - 3 км 20 - 23 точки комплексного описания (полного на основных точках и сокращенного на картировочных). В лесостепной зоне при большей сложности описания почвенных профилей серых лесных почв и черноземов дневная норма снижается до 12-15 точек на рабочую пару, но одновременно увеличивается длина полевого маршрута до 3 - 4 км. Последнее связано, по нашему мнению, с меньшей сложностью морфологической структуры ландшафтов эрозионно-денудационных равнин лесостепи по сравнению с ландшафтами моренных и моренно-водноледниковых равнин лесной зоны, что позволяет делать сеть точек более разреженной.

На 1 км2 может быть задано от 2-3 до 20-25 точек. В среднем необходимая плотность точек на 1 км2 в лесной зоне составляет 10-15, в лесостепной 6 - 8, а на ключевых участках до 10-12 точек и больше. Это несколько более высокие нормы, чем приведенные ниже расчеты, заимствованные из опыта почвенной съемки. Может быть, это и правомерно, так как ландшафтная съемка, по-видимому, сложнее почвенной, по крайней мере, по мнению И. И. Мамай, указанные выше нормы занижены. Ландшафтоведы давно уже отказались от практиковавшегося ранее в отраслевых исследованиях регулярного размещения точек по сети квадратов, так как использование аэрофотоснимков, хороших топографических карт и других материалов и составление предварительных ландшафтных карт позволяет сделать эту сеть более рациональной - разреженной на крупных контурах относительно однородной территории и более густой на площадях с мелкоконтурными и разными по характеру ПТК. Однако использование компьютерной техники при составлении ландшафтных карт вновь вынуждает нас признать правомерность метода регулярного размещения точек наблюдения.

Нормативы отдельных видов работ ландшафтных исследований еще не выработаны. Для комплексного дешифрирования аэрофотоснимков при составлении ландшафтной карты масштаба 1:10 000 на среднеосвоенную территорию средней полосы Русской равнины А. А. Видина определяет норму в 5 - 8 км2 (или 5 - 8 дм2 в масштабе карты) на одного человека в день. Наш опыт работы показал, что для масштаба 1: 100 000 можно за это же время отдешифрировать 100 км2 (или 1 дм2 в масштабе карты). Но как бы ни были значительны затраты времени на составление предварительных ландшафтных карт, они оправдываются существенным повышением качества всей работы в целом и более сжатыми сроками полевых работ.

Полевая документация

Фиксация материалов полевых наблюдений производится в полевом дневнике, а также в журналах, бланках и прочих документах, которые разрабатываются исходя из целенаправленности, масштаба работ и других специфических особенностей экспедиции.

Дневник (наряду с полевой картой и бланками) - один из основных документов, требующих тщательного хранения и аккуратного обращения. На правой стороне страниц простым мягким карандашом предельно четко ведутся текстовые записи по ходу наблюдений, на левой стороне делаются зарисовки, составляются схематические планы, колонки геологических обнажений, записываются фотокадры, вносятся поправки, относящиеся к тексту правой стороны.

Полевой дневник в первый же день работы должен иметь заполненный титульный лист, на котором указываются: название организации, экспедиции, номер полевого дневника, фамилия, имя, отчество исследователя, дата начала ведения дневника и номер точки, с которой начата работа, а позже - дата окончания работы и номер последней точки. В конце титульного листа записывается почтовый адрес и телефон для того, чтобы в случае утери дневника нашедший мог бы связаться с его автором. По окончании дневника в начале или в конце его дается «Содержание» с названиями маршрутов и перечнем точек, описанных в каждом из них. Впрочем, лучше «Содержание» составлять в процессе полевых работ, по мере окончания каждого из маршрутов, с указанием страниц (дневник должен быть заранее пронумерован).

Если основная часть полевого материала документируется на бланках, то в дневниках записываются лишь специализированные точки, наблюдения по маршруту между точками, поконтурная характеристика выявленных ПТК, более сложных, чем фация (она описывается на бланке). Необходим ежевечерний просмотр полевых записей с целью контроля их полноты и правильности и первичных обобщений материала.

Обычно при работе в среднем и особенно в крупном масштабах наблюдения на точках носят массовый характер, и их фиксация производится на бланках. Преимущество бланков перед полевым дневником заключается в строго определенном перечне фиксируемых сведений. Бланк - своего рода сокращенная программа наблюдений. Чем строже будет соблюдаться требование единообразия и сравнимости собранного материала, тем более правильные и точные выводы могут быть сделаны на основании их обработки. Другое преимущество бланков - удобство «сортировки» материала по нужным признакам описанных фаций. Недостатки бланка - его привязанность к «точке» (фации) и некоторая его «формалистичность». Последнее качество уже упоминалось как положительное, помогающее обработке полевого материала, но жесткая форма не всегда вмещает в себя все. Обстановка может требовать записей дополнительных фактов, не предусмотренных графами бланков. Вот почему даже при наличии бланков ведение полевого дневника остается обязательным для исследователя.

Форма бланка (бланков) вырабатывается в экспедиции в подготовительный период или заимствуется из имеющихся образцов. Она может и должна изменяться в зависимости от направления исследований и от условий района работ. Применение универсальных бланков «на все случаи жизни» неудобно. Однако разнообразие форм бланков не должно быть беспредельным, иначе материалы полевых исследований различных экспедиций могут оказаться плохо сопоставимыми. Чтобы получить сравнимые материалы, необходима максимально однородная информация. И в дневнике, и в бланках нельзя ничего стирать, можно лишь зачеркивать и писать заново. Нельзя уничтожать бесследно записи, показавшиеся ошибочными, чтобы не лишить себя возможности вновь подумать над неясными вопросами. К тому же правка по стертому может вызвать у кого-либо сомнение в достоверности написанного. Полевой бланк, полевая карта, дневник - это документы и отношение к ним должно быть соответствующим.

Рекогносцировка и выбор участков для детальных исследований

Прежде чем начать полевые исследования, руководство экспедиции проводит предварительную разведку - рекогносцировку.

Исследования мелкого масштаба, как правило, охватывающие весьма обширные территории, нередко проводятся без рекогносцировки, так как сами они носят характер маршрутных наблюдений, в меньшей степени - ключевых. Трудно предпослать этим исследованиям еще более быстрый предварительный осмотр территории. В этом случае наиболее эффективны аэровизуальные наблюдения с самолета или вертолета, но это далеко не всегда возможно.

При среднемасштабных исследованиях рекогносцировка необходима.

Первая ее задача - предварительное ознакомление с территорией и выбор ключевых участков, подлежащих детальному изучению и охватывающих по возможности все разнообразие ландшафтов, представленных на изучаемой территории.

Вторая задача - выявление степени соответствия картографического и аэрофотоматериала и сведений, полученных из литературных и фондовых источников, действительной обстановке на местности. Это может касаться и границ лесных массивов, пашни, луговых угодий, и наличия или отсутствия дорог и населенных пунктов, и характера грунтов и т.д. Если в процессе такой проверки окажется, что имеющиеся материалы полноценны, и им можно доверять, то это существенно облегчит работу и, возможно, позволит сделать несколько более разреженной сеть маршрутов, запланированную ранее. В противном случае объем работ увеличивается.

Третья задача - выработка единой для всей экспедиции методики наблюдений и фиксации их результатов, согласование применения терминов и наименований при определении форм рельефа, цвета пород и почвенных горизонтов, механического состава почв в пробах на скатывание, полных названий природных территориальных комплексов и т.д. Для этого очень важно, чтобы в рекогносцировке участвовали, кроме начальника и научного руководителя экспедиции, по крайней мере, все начальники отрядов, если нельзя обеспечить участия всех полевых работников. Сам же процесс работы представляет собой обычно совместные наблюдения на точках и по маршруту, закладку типичных профилей, пробную съемку одного или нескольких ключевых участков. Начинающие исследователи одновременно проходят свою первую стажировку.

При крупномасштабных исследованиях съемка ведется методом сплошного картографирования, благодаря чему роль ключевых участков здесь менее значительна. В основном же задачи остаются теми же, которые перечислены выше.

Что касается выяснения степени соответствия материалов действительности, то при любом масштабе работ в задачу рекогносцировки не входит сплошная проверка. Выясняется лишь степень соответствия и наиболее слабые места материалов. В процессе рекогносцировки целесообразно также описание некоторых геологических обнажений и типичных для территории форм рельефа (см. раздел 3.7).

Еще один вид работы начинается во время рекогносцировки, а позже продолжается в процессе всего полевого периода - сбор фондовых материалов на местах и получение устных сведений от местных жителей, специалистов сельского и лесного хозяйства и других лиц. Чем крупнее масштаб работ, тем больше необходимости в сборе данных, получить которые в подготовительный период просто невозможно. Например, книгу истории полей можно увидеть только у агронома хозяйства. Он же может рассказать о многом, что касается местных различий в сроках полевых работ на отдельных участках, о конкретной урожайности сельскохозяйственных культур в разных подурочищах и фациях. Местные жители вспомнят о катастрофических половодьях, подскажут собственные названия ручьев, лесных и луговых урочищ и т.д.

Результатом проведенной рекогносцировки должны быть откорректированные маршруты дальнейшей полевой работы, нанесенные на предварительной ландшафтной карте, выбранные линии опорных профилей, переработанная легенда к карте, унифицированная методика наблюдений, фиксации материалов и сбора образцов. Обычно также после рекогносцировки еще раз просматривается и корректируется программа исследований в соответствии с конкретной обстановкой.

Точки наблюдений, ключевые участки, пробные площади, учетные площадки, почвенные шурфы

Точки наблюдений.

Наблюдения на точке дают основной полевой фактический материал при любом масштабе работ. Различают точки комплексных описаний - основные, картировочные, опорные и точки описания отдельных объектов и явлений (обнажений, родников, участков развития дефляции и т.п.) - специализированные.

Каждая комплексная точка характеризует фацию и ее положение в системе единиц более высокого ранга - доминирующее в таком-то урочище, подурочище; субдоминантное; редкое; уникальное.

Основные точки наиболее часто описываются при ландшафтном картографировании. Их выбирают в типичных местах с тем, чтобы добытые на точке сведения могли быть распространены на значительную территорию либо на небольшие, но часто повторяющиеся ПТК (на доминантные или субдоминантные природные комплексы). На основных точках делают описание рельефа, закладывают и описывают почвенный разрез и геоботаническую площадку, фиксируют характер и степень увлажнения. При необходимости уточнения диагностики или характеристики почв отбирают их образцы; собирают для гербария незнакомые растения; определяют полное название фации; записывают некоторые другие данные.

Картировочные точки также предназначены для картографирования, но это точки очень сжатых наблюдений и фиксирования материала в специальной сокращенной (картировочной) форме бланка или же в полевом дневнике. Все записи на такой точке сведены до минимума. Для определения почвы делают лишь неглубокую прикопку. Фитоценоз записывают по доминирующим видам без заложения площадки. Картировочные точки служат для экстраполяции данных, полученных на основных точках, на аналогичные по внешнему облику участки крупного контура либо на другие подобные контуры, где основные точки можно и не закладывать.

Опорные точки отличаются от основных и картировочных особой подробностью наблюдений и описания. При большой мощности покрова рыхлых поверхностных отложений почвенный шурф может достигать глубины 3 - 5 м и сопровождаться ручным бурением на его дне (на основных точках это производится не часто). Но главное не это, а то, что опорные точки (их нередко называют ключами) используют для изучения геофизических и геохимических характеристик ПТК, позволяющих выявлять процессы функционирования и динамики природных комплексов. На опорных точках, как правило, берут образцы на сопряженные анализы (почв и почвообразующих пород, растений, вод), дают качественную и количественную характеристику горизонтов, с особой тщательностью и детальностью производят все описания. При выполнении работ по методу Н. Л. Беручашвили производят качественное и количественное описание каждого геогоризонта: крон деревьев, их стволов, корневой системы, кустарников, кустарничков, травяного покрова и его корневой системы, мхов, лишайников, почвенных горизонтов и почвенной фауны, почвообразующих и подстилающих пород, грунтовых вод. Однако это особый вид ландшафтно-геофизических, отчасти и ландшафтно-геохимических, исследований, разработанных Н. Л. Беручашвили и опубликованных в его трудах, а также в учебнике Н. Л. Беручашвили, В. К. Жучковой.

Порядок нумерации точек в каждой экспедиции может быть своим, но обязательно таким, чтобы исключалась путаница в собранных материалах. Принятый порядок должен строго соблюдаться и при нанесении точек на карту, и в бланках, и в дневниках, этикетках, описях образцов. Во избежание путаницы не рекомендуется менять номера точек. Обычно полевым парам исследователей выделяют свои десятки или сотни номеров. Если в экспедиции несколько отрядов, то у каждого может быть своя нумерация, но с добавлением перед номером первой буквы фамилии начальника отряда или другого индекса. Если же наложение номеров по какой-либо случайности все же произошло, то лучше к дублирующим номерам добавить буквенные индексы, чем менять сам номер. Пропуск в номерах не опасен, но может принести дополнительные хлопоты (поиск «исчезнувших» точек).

Поэтому все случаи пропусков номеров точек описания следует фиксировать на левой стороне страницы полевого дневника.

Ключевые участки, пробные площади, учетные площадки, почвенные шурфы.

Выбранные в процессе рекогносцировки ключевые участки исследуются более детально, чем остальная территория.

В практике комплексных физико-географических исследований, направленных в основном на ландшафтное картографирование, под ключевым участком подразумевается площадь, не связанная в своих рамках с границами ПТК. Он может иметь любую форму и располагаться в одном ландшафте или включать в себя участки других ландшафтов. Картографирование на ключевом участке производится в более крупном масштабе и с большей подробностью описаний (почти все точки основные, а некоторые опорные). Основное назначение ключевых участков - получение более точных и полных сведений о ПТК с целью их более глубокого познания и экстраполяции выявленных характеристик на менее изученные ПТК.

Пробные площади закладываются для изучения фитомассы древесно-кустарниковых растений. Их границы не должны выходить за пределы изучаемого ПТК.

Учетные площадки.

На них производится укос травяной фитомассы и сбор мортмассы ветоши, валежника и подстилки. Форма площадок квадратная, размер - 1 х 1 м или 0,5 х 0,5 м; реже форма прямоугольная, а размер 1 х 0,5 м или 2 х 1 м. В простых ПТК иногда закладывается по одной учетной площадке. Часто практикуется трех-пятикратная повторность. В пределах пробной площади учетные площадки закладываются в типичных или резко контрастных местах с повторностью, которая должна обеспечить достаточную точность наблюдений. Величина ошибки массы укоса не должна превышать 10 %.

Почвенные шурфы служат для описания почвы и отбора почвенных образцов, а также для определения влажности и других характеристик почвы, почвообразующей и подстилающей пород.

Для описания почвы закладываются шурфы размером 1,5 х 0,7 х 1,5 м или 1 х 0,5 х 0,5 м. В горах выходы горных пород или большая каменистость почвы часто не позволяют углубиться даже до 0,5 м, тогда приходится довольствоваться прикопками глубиной в первые десятки сантиметров.

Комплексное физико-географическое описание

Комплексное физико-географическое описание необходимо при ландшафтном картографировании и профилировании, при создании карт и характеристик физико-географического районирования и обобщающих монографий о природе тех или иных регионов, при обосновании проектов различных видов природопользования и т.д. Мы остановимся здесь на полевых описаниях преимущественно для ландшафтного картографирования.

Основное время при этом уходит на описание фаций на точках наблюдений, для чего, как правило, используются специальные бланки. Уже в бланках обычно есть графы, частично раскрывающие окружение описываемой фации. Но и этого бывает недостаточно для полной характеристики выделенных на карте контуров обычно более высокого ранга, чем фация. Необходимый материал дополняется (и фиксируется в дневнике) на этой же описываемой точке с использованием аэрофотоснимка и топографической карты, а также при переходе от одной точки к другой.

Охарактеризуем кратко основные методические приемы описания фации на основной точке комплексных описаний.

Адресная и физико-географическая привязка.

Наблюдения и описания на точках начинаются с того, что их местоположение наносится на карту и обозначается номером. На карте рекомендуется ставить небольшой крестик, наиболее четко обозначающий положение точки. Одновременно на аэрофотоснимке в соответствующем месте делается прокол тонкой булавкой, а на обороте снимка место прокола обводится карандашом, ставится номер точки и делается схематическая зарисовка ее положения по отношению к ближайшим ориентирам.

Для правильного нанесения на карту выбранной точки описания необходимо хорошо ориентироваться на местности. На первых порах на это нельзя жалеть времени, так как в спешке неправильная ориентировка может свести на нет результаты целого дня работы.

Каждый бланк автор описания обязательно датирует и подписывает. Для этого в бланке отведены специальные графы. Заполнение бланка производят простым карандашом или шариковой ручкой. Ни одна графа бланка не должна быть пропущена. В некоторых графах могут быть проставлены прочерки или вписаны замечания «нет», «не достигнута», «не наблюдалась». Не должно быть только пустого места, так как впоследствии при обработке материалов пропущенные графы приводят к ненужным сомнениям и снижают ценность собранных материалов.

Записав на бланке дату и номер точки, нужно дать ее адрес, т.е. положение по отношению к двум постоянным ориентирам. Если направление и расстояние указывают от населенного пункта, то необходимо обязательно записать, от какой его части - центра, какой-либо окраины, водонапорной башни, если она показана на карте. Нельзя давать адрес, опирающийся на предыдущие точки. Ссылка на них может служить лишь дополнением к основному адресу. Нельзя также привязывать точку к непостоянным и ненадежным ориентирам, например к полевым дорогам, которые часто перепахиваются.

При крупномасштабном картографировании практикуется давать адресные данные по системе квадратов. При исследовании лесистой территории для адресовки удобно дополнительно использовать нумерацию лесных кварталов. В ряде случаев необходимо также давать административно-хозяйственную привязку (название лесхоза и лесничества, сельскохозяйственного предприятия, административного района, области и т.п.).

Если в бланке не отведено специальных граф, то дополнительно к адресу дают указания на принадлежность описываемой фации к определенному генетическому типу поверхности, а по возможности и к типу (роду) ландшафта или к конкретному ландшафту.

Геологические и геоморфологические наблюдения.

Общие сведения о геологическом строении территории собирают еще в подготовительный период из опубликованных и фондовых источников. Широко распространены геологические карты масштаба 1:200 000 и более мелких масштабов. На многие территории имеются материалы крупномасштабной геологической съемки. Полевое описание геологических обнажений (обычно в дневнике) носит вспомогательный характер, но практикуется довольно часто.

Геоморфологические характеристики также могут быть получены из опубликованных и фондовых источников, так как геологические карты обычно сопровождаются геоморфологическими. Но обычно этого бывает недостаточно, и описание рельефа в поле делают со всей тщательностью. Формы рельефа по своей размерности подразделяются на мега-, макро-, мезо-, микро- и наноформы.

Мегаформы имеют площадь во многие сотни тысяч квадратных километров. К ним относятся, например, целые горные страны, такие, как Алтай, Урал и другие, или же Западно-Сибирская равнина. Макроформы имеют площадь от сотен до десятков тысяч квадратных километров (например, хребты и впадины горной страны, возвышенности и низменности на равнине, долины крупных рек). Мезоформы могут занимать весьма различную площадь — от нескольких десятков квадратных километров до сотен и десятков квадратных метров, например междуречные поверхности, моренные гряды, долины ручьев, балки, овраги, озерные котловины, барханы, карстовые воронки, западины и т.д. Микроформы - это неровности, осложняющие поверхность мезоформ, например небольшие карстовые воронки, западины, эрозионные рытвины, кочки, выбросы кротов и т.д. Наноформы - очень мелкие неровности рельефа, например, приствольные повышения, рябь на поверхности песчаной дюны, струйчатые размывы и т.д.

В бланке фиксируется положение точки в пределах макро- и мезоформы рельефа, но основное внимание обращается на описание элемента мезоформы, в пределах которого заложена точка, и на микрорельеф. Сама характеристика макро- и мезоформ рельефа и представление об их генезисе не могут быть составлены по наблюдению на одной точке. Первоначально они складываются в процессе предварительного ознакомления с литературой и топографическими картами, а затем путем ряда наблюдений на точках и по маршруту; фиксируются эти наблюдения в дневнике. Положение точки по отношению к элементам крупных форм рельефа должно быть указано в бланке возможно более точно, например: плоская поверхность центральной части междуречья, горная вершина, вершина холма или увала, склон долины или междуречья (и какая именно его часть), основная поверхность террасы, высокая пойма, дно балки и т.д.

На практике чаще всего приходится иметь дело с наклонными поверхностями. Для них обязательны указания крутизны (в градусах) и экспозиции. При этом если программой не предусмотрена особая точность, достаточно указывать экспозицию в восьми измерениях по странам света: западная, северо-западная, северная и т.д.

Для равнинных стран наиболее употребимы следующие градации поверхностей по крутизне уклона:

Плоские (субгоризонтальные)0 - 10

Слабонаклонные равнины (очень пологие склоны) 1 - 3°

Склоны пологие (наклонные равнины) 3 - 5°

Слабопокатые5 - 7°

Покатые……………………………………7 - 100

Сильнопокатые…………………………….10 - 150

Крутые ……………………………………..15 - 200

Очень крутые 20 - 40°

Обрывистые >40°

Для горных стран могут быть приняты иные градации:

Плоские и почти плоские поверхности0 - 4°

Пологие склоны4 - 10°

Покатые склоны10 - 20°

Склоны средней крутизны20 - 30°

Крутые склоны30 - 45°

Очень крутые склоны45 - 60°

Скалистые (обрывистые) склоны60 - 90°

Кроме экспозиции и крутизны необходимо также дать описание общей формы и характера поверхности склона (выпуклый, вогнутый, прямой, волнистый, террасированный, бугристый, испещренный рытвинами и т.д.), а также указать, в какой части склона расположена точка (верхняя часть, средняя, нижняя, у подножия склона, вблизи бровки). Положение точки на склоне при большой его протяженности не всегда легко определить без помощи карты. Что же касается остальных сведений о склоне, то их непосредственно получают в процессе полевого наблюдения и записывают.

В характеристике рельефа отмечают также абсолютную и (или) относительную высоту точки над местным базисом эрозии (по топографической карте или замеренную анероидом и вычисленную с учетом поправок). Абсолютные отметки всегда необходимы при работе в горах, где это имеет существенное значение при определении характера высотной зональности, и где высота нередко может служить одним из ориентиров для привязки точки.

Особое внимание обращают на описание микрорельефа. Необходимо точно дать описание формы и характера распределения микроповышений, понижений, уступов, прибегая к количественным определениям размеров и частоты встречаемости. Например, склон пересекают эрозионные рытвины шириной 1 - 2 м и глубиной до 50 см; на участке склона длиной в 1 км их насчитывается до 30. Или: ровная поверхность испещрена западинами диаметром в 20 - 30 м, глубиной до 40 см; площадь, занятая ими, составляет около 20 %.

Указывая положение точки на элементе рельефа, необходимо уточнить, расположена ли она на относительно ровном участке или же в микропонижении (на повышении) и в какой его части (в центре, ближе к окраине). Для лучшей наглядности рекомендуется здесь же сделать небольшую схематическую зарисовку, иллюстрирующую положение точки по отношению к элементам рельефа и микрорельефа. Нередко это предусматривается непосредственно формой бланка (отводится специальное место для зарисовок).

Для более точного количественного определения размеров и частоты встречаемости микроформ прибегают к различным способам. Если микроформы хорошо просматриваются на аэрофотоснимках, то на опорных точках (или же на некоторых основных) их можно измерить и приблизительно подсчитать прямо по снимку.

Можно проделать эту работу непосредственно на точке наблюдения, применив метод линейной таксации. Он состоит в следующем. Небольшую площадку, в средней части которой находится точка описания, пересекают параллельными ходами, на протяжении которых делают подсчет расстояний (обычно пар шагов), пройденных по ровной поверхности и по микропонижениям (либо повышениям). Затем суммируют все расстояния, пройденные вне микроформы и по микроформам. Условно общая длина ходов берется за 100%, а доля ходов, приходящихся на ровную поверхность и микроформы, - за процент площади, занятой соответственно ровной поверхностью и микроформами. Если микроформы имеют линейную протяженность, то важно, чтобы ходы были заложены поперек этих форм.

В зависимости от необходимой точности наблюдения могут быть более или менее сложными. Можно, например, предпринять глазомерную или даже инструментальную съемку разбитого вокруг точки участка, и все дальнейшие расчеты производить уже по полученному крупномасштабному плану.

Однако чаще всего такая степень точности не требуется, и нет возможности уделять таким измерениям много времени. Следует с самого начала работы узнать длину собственного шага и выработать наиболее удобную систему измерения расстояний шагами с простым пересчетом шагов в метры (например, пара шагов - 1,5 м или три шага – 2 м). Удобно также сделать на полоске миллиметровой или клетчатой бумаги переводную масштабную линейку (шагов в метры), чтобы не делать всякий раз лишних вычислений. Подобные линейки удобно также сделать для топографической карты и аэрофотоснимка, используемых в полевом исследовании, чтобы быстро переводить миллиметры и сантиметры карты или снимка в метры и километры на местности. Следует также тренировать глаз на примерном определении расстояния, высоты, глубины, крутизны, площади тех или иных объектов. Это нужно не только при описании рельефа, но и в процессе всей работы, хотя злоупотреблять глазомерными наблюдениями взамен точных измерений также не следует.

Не следует применять слишком часто фразу: «Микрорельеф не выражен». За ней нередко скрывается неумение или нежелание видеть то, что есть в природе. Правда, на практике, микрорельеф и нанорельеф описывают в одной графе бланка, но непременно с указанием размеров формы.

Необходимо, но далеко не всегда просто определить тип рельефа территории, к которой относится точка описания. Следует, однако, избегать категоричного суждения о генезисе форм рельефа, если нет убедительных тому доказательств.

Общие представления о генетических типах рельефа и о классификациях форм рельефа можно получить из геоморфологических карт, из классического труда И. С. Щукина, работ А. И. Спиридонова, О. К. Леонтьева и Г. И. Рычагова, Ю. Г. Симонова, С. И. Болосова и др.

Изучению современных геоморфологических процессов, оказывающих сильное влияние на функционирование и состояние природных территориальных комплексов, уделяется особое внимание. Наиболее распространенные из них - осыпи, обвалы, сели, снежные лавины, глубинная и плоскостная эрозия, нивация (образование на склоне ниш вследствие длительного залегания снега), карстовые процессы, оплывание, солифлюкция, дефляция, децерация (оплывание дернины на склоне по мерзлому грунту), абразия и др. В бланке недостаточно указать только название геоморфологического процесса, необходимо дать его характеристику.

Фиксация режима миграции вещества, увлажнения.

Полевые ландшафтно-геохимические исследования могут быть самостоятельным разделом комплексных физико-географических исследований. Однако один из важнейших ландшафтно-геохимических показателей - режим миграции вещества,тесно связанный с рельефом, породами и условиями увлажнения, - следует отмечать на каждой точке полного комплексного описания.

Увлажнение ПТК фиксируется в бланке (дневнике) двумя показателями - типом(характером) и степенью(интенсивностью).

Выделяются следующие типы увлажнения: атмосферное, грунтовое безнапорное и напорное (последнее в случае наличия на территории ПТК источника), натечное или делювиальное (за счет поверхностного стока), пойменное (за счет половодий и паводков).

Очень часто источников увлажнения два или несколько, при этом атмосферное присутствует повсеместно и в случае наличия других типов и их большой значимости его можно не указывать. Например, писать «пойменное» или «грунтово-натечное» вместо «атмосферно-пойменное» и «атмосферно-грунтово-натечное».

Характер увлажнения в некоторых природных территориальных комплексах в течение года меняется и зависит от состояний. Например, при одних состояниях оно бывает атмосферным, а при других — пойменным.

Еще в большей степени, чем тип, может изменяться степень (интенсивность) увлажнения. В связи с этим различают:

недостаточное увлажнение - почва очень сухая;

слабое- почва свежая;

нормальное - почва влажная;

обильное(или повышенное) - почва сырая;

избыточное - почва мокрая.

При фиксации степени увлажнения в момент наблюдения необходимо оговаривать погодные условия, так как обычно сырая или мокрая почва может стать сухой в жаркий период, а сухая или свежая — мокрой или сырой после дождя. Это означает, что следует отличать увлажнение в момент наблюдения от интегрального увлажнения, определяющего характер растительности и почвы.

Следует также обращать внимание на наличие свежих отложений — аллювия, делювия, эоловых и др. и фиксировать результаты наблюдений в бланке или в дневнике.

При характеристике увлажнения дополнительно указывают также его режим, постоянное(устойчивое) и переменное(неустойчивое), а также глубину залегания грунтовых вод (верховодки) по появлению воды в стенке или на дне шурфа либо по близлежащему колодцу, урезу воды в реке.

Описание растительности.

Что раньше описывать - почвенный разрез или растительность, не имеет особого значения, так как оба компонента теснейшим образом взаимосвязаны и взаимообусловлены и зависят от рельефа, состава пород, увлажнения, микроклимата. Часто рытье шурфа рабочим и описание растительности специалистом производятся одновременно.

Методические приемы описания растительности, как в сущности и других компонентов, принципиально ничем не отличаются от приемов, употребляемых при соответствующих отраслевых исследованиях. Они могут быть лишь менее детальными, да и то не всегда (в зависимости от программы работ).

С классическими приемами изучения растительного покрова и биоиндикации можно ознакомиться по трудам Л. Г. Раменского, С. В. Викторова и др., С. В. Викторова и А. Г. Чикишева. Немало работ имеется по геоботаническому картографированию, например Д. Д. Вышивкин.

На основной точке дается подробное описание ботанической площади. Для луговой или болотной растительности принятый размер площади 100 м2 или 10 х 10 м. Не нужно подходить к этому формально и стремиться во что бы то ни стало соблюдать квадратную форму и указанный размер площади. Важно, чтобы она была по возможности близка к указанному размеру, а главное - располагалась в пределах одной фации. Нельзя в одну и ту же площадь включать обычный луг с мезофильным травостоем и мокрую западину с осокой.

Описание травянистой растительности

Для выбранной площади составляется список растений, в котором обычно сначала перечисляются злаки, потом осоки, бобовые, разнотравье. Однако строгого порядка здесь соблюсти не удается, так как список непрерывно пополняется новыми обнаруженными растениями.

Каждое растение записывается двойным названием (род и вид) по-русски и по-латыни. При плохом знании латыни латинские названия вписываются в бланк при вечерней обработке материала (из определителя). В случае если растение неизвестно исследователю или есть сомнение в его определении, этому растению дается рабочее название (любое, но такое, чтобы оно хоть сколько-нибудь соответствовало его внешнему виду и легко запоминалось). Само же растение берется в гербарий для последующего определения.

Далее записывается высота, обилие, проективное покрытие, фенофаза, жизненность, характер распределения (последовательность может меняться в зависимости от избранной формы бланка).

Высота берется средняя для экземпляров данного вида (без генеративных органов) и указывается в сантиметрах либо дается в виде дроби, где в числителе показана высота всего растения, включая генеративные органы, в знаменателе - без них.

Обилие обычно отмечается по шкале О. Друде:

сорз (copiosae - очень обильно) — растения почти сплошь закрывают почву; проективное покрытие 70-90 %;

сор2 (обильно) - растений много, перекрытия нет; проективное покрытие 70 -50 %;

сор1 (довольно обильно) - растений значительно меньше; проективное покрытие 50 - 30%;

sp (sparsae - рассеянно, в небольшом количестве) - растение приходится искать; проективное покрытие 30-10 %;

sol (solitariae - единично) - растения обнаруживаются при тщательном осмотре площади; проективное покрытие менее 10 %;

un (unikum - единственный экземпляр) - на всей площади обнаружено лишь одно растение данного вида.

В качестве дополнительного обозначения после знака обилия может ставиться знак gr (grigarie) - если растения распределены по площади неравномерно и местами образуют плотные группы.

Фенофазаотмечается значками или же буквенными обозначениями, например:

пр- растение прорастает;

р- росток;

вег- растение вегетирует;

б- бутонизация;

ц1 - зацветание;

ц2 - полное цветение;

ц3 - отцветание;

п1 - плоды (семена) незрелые;

п2 - плоды (семена) зрелые;

п3 - осыпание плодов (семян);

отр - отрастание после плодоношения;

отм - отмирание.

Жизненность обычно определяют по трехбалльной системе:

полная(растения имеют нормальный рост, цветут и плодоносят),

средняя (растения среднего роста, цветут не все экземпляры)

пониженная( растения низкорослые, не цветут, имеют угнетенный вид).

 Другими словами, это состояние растений: хорошее, удовлетворительное, угнетенное плохое).

Среднюю высоту травостоя дают в сантиметрах в конце описания, там же указывают общее проективное покрытие и покрытие по доминирующим видам.

Проективное покрытие определяют на глаз и отмечают в процентах от общей площади описываемого участка. Хорошо иметь с собой для сравнения рисунки вариантов проективного покрытия для разных по характеру листовых пластинок растительных сообществ.

На опорных точках (не на основных, а выборочно) производят количественный учет растительной массы. В разных частях площади выбирают четыре участка размером по 1 м2 (или по 0,25 м2). С этих участков большими ножницами или садовыми секаторами выстригают все растения на высоте 5 - 7 см над поверхностью земли. Растительную массу взвешивают: сырую, в сухом виде, целиком и разобранную по отдельным группам растений (злаки, осоки, бобовые, разнотравье, несъедобные или ядовитые растения и т.д.).

Затем производится пересчет и определение урожайности луга в центнерах на 1 га с поправочным коэффициентом за счет того, что на лугах никогда не косят так, как можно состричь с площадки. Поправочный коэффициент и определяют из сравнения полученных результатов с тем, что известно для данного луга из опыта его хозяйственного использования.

Если определение растительной массы делается не на каждой основной точке, то так называемое культуртехническое состояние угодья надо отмечать на всех основных точках. При этом указывают закустаренность (в процентах), наличие деревьев, пней, кочек (штук на 1 га), кротовых куч, пятен выбитой растительности, ядовитых растений. Отмечают также, как используется участок (под сенокос, выпас или частично как сенокос, а частично как выпас), производились ли когда-либо мероприятия по улучшению, когда и какие.

Описание леса

Описание леса производится на площади от 400 м2 (20x20 м), если описывается одна фация, до 1 га (100 х 100 м). Описание видового состава леса дают по ярусам.

Для каждого вида указывают формулу древостоя с учетом обилия по 10-балльной системе (например, С8Д2: сосна обыкновенная - 8, дуб черешчатый - 2); среднюю высоту, средний диаметр ствола на высоте 1,3 м; высоту прикрепления крон. Для всего древесного полога дают общую сомкнутость крон в долях от единицы (0,5; 0,8 и т.д.). При необходимости можно ввести в бланк оценку класса бонитета по принятой в лесоводстве системе, а также и запаса древесины(в м3/га). Класс бонитета - это функция двух переменных - возраста и высоты дерева; отражает жизненность древостоя.

После описания всех ярусов древостоя в бланк заносят сведения о подросте(молодых древесных растениях); о кустарниковом и травяно-кустарничковом ярусах(название видов, обилие, высота, фенофаза, жизненность, характер распределения); о мохово-лишайниковом покрове(обилие, название видов, жизненность, распределение). Отмечают также общий характер, облик, проективное покрытие (в процентах) для каждого из ярусов.

При описании культурных посевов в бланке дают название культуры, фенофазу, жизненность и особо перечень сорняков с указанием степени засоренностикультур. Последнюю определяют на глаз либо взвешиванием. Для этого на площади 10 х 10 м выбираются четыре площадки по 0,25 м2. На площадках посев выстригают и взвешивают. Затем сорняки выбирают и взвешивают отдельно. Посев считается слабозасоренным при доле сорняков до 10 %, среднезасоренным при 10 - 25%, сильнозасоренным, если вес сорняков составляет 25 % и более от веса общей, массы укоса.

Приемы описания растительности и перечень фиксируемых сведений могут изменяться в зависимости от программы работ. В качестве общей рекомендации можно посоветовать при описании растительности (особенно на первых порах) меньше доверять глазомерному определению размеров, частоты встречаемости и т.п. и чаще производить непосредственные замеры с вычислением средних величин. В конце описания дают название ассоциации по преобладающим видам и группам растений. Это название может быть двух- и трехчленным. При этом на последнее место ставят преобладающее растение или группу растений, например: разнотравно-мятликовый луг или мятликово-бобово-разнотравный луг. В первом случае в ассоциации преобладает мятлик, во втором - разнотравье. Этот же принцип сохраняется и для названия лесной ассоциации с дополнительным указанием на особенности мохового, травяно-кустарничкового покрова или подлеска, например: дубрава влажнотравная, липово-дубовый лес с лещиной, ельник-зеленомошник-черничник и т.д.

На карте рядом с точкой ставят индекс растительности, состоящий из нескольких значков. Каждый значок изображает определенный вид, например: дуб черешчатый, кукушкин лен, мятлик луговой, донник лекарственный, лютик едкий; или группу растений: осоки, злаки, бобовые, разнотравье, широкотравье, зеленые мхи, лишайники и т.д. Значковые обозначения дают в обратном порядке в отличие от словесной записи названия ассоциации (на первом месте ставят значок преобладающего растения, а затем в порядке убывания два-три других значка).

Система значковых обозначений вырабатывается в экспедиции перед выездом в поле, а в процессе полевой работы пополняется. Можно воспользоваться также таблицей индексов растений (см. приложение 9).

Описание почв

Почва - зеркало ландшафта, компонент, стоящий на грани живой и мертвой природы, как бы синтезирующий в себе основные особенности рельефа, литологии, гидрологических и климатических особенностей территории, ее растительности и отчасти животного мира. Почва более консервативна, чем растительный покров, и после уничтожения или изменения растительности еще долго сохраняет малоизмененными свои основные свойства.

Изучение и описание почв производят по почвенным разрезам: ямам (шурфам), полуямам, прикопкам. Можно описывать почву также по естественному обнажению обрывистого берега реки, склона оврага или края карстовой воронки и т.д. Однако брать образцы для анализов в таких местах не рекомендуется, так как почвенный профиль может оказаться не совсем типичным в связи с длительным процессом боковой миграции элементов. Кроме того, не следует далеко распространять описанную в обнажении разность почв, так как эта разность может быть свойственна лишь узкой прибровочной полосе.

Рекомендуется осматривать и описывать свежие искусственные выемки -силосные ямы, траншеи трубопроводов, канавы под фундамент различных построек и др. Безусловно, эти выемки могут дать лишь дополнительный материал к заранее намеченной сети наблюдений на точках, но пренебрегать им нельзя. Траншеи и канавы могут дать очень интересные данные по изменению почвенного покрова в разных условиях рельефа и микрорельефа, а силосные ямы, заложенные, как правило, на повышенных местах междуречий, дают обычно глубокий разрез типичных для территории почв и могут иногда служить вместо опорных шурфов. В пределах населенных пунктов верхние горизонты почвенного профиля часто бывают нарушены, и использовать искусственные выемки здесь для описания почвенных разрезов нецелесообразно.

На равнинах на основной точке закладывают почвенный разрез глубиной 1,5 - 2,0 м (до почвообразующей породы), длиной также 1,5 - 2,0 м и шириной 0,7 - 0,8 м. Наиболее хорошо освещенную стенку оставляют прямой (по ней и будет производиться описание разреза), противоположная спускается ко дну ступенями. Глубину разреза можно менять в зависимости от типа почв и породы, можно изменять его длину и ширину (они должны быть такими, чтобы удобно было копать разрез, описывать и брать из него образцы).

Копать разрез надо аккуратно, выбрасывая землю по обеим сторонам не слишком далеко, чтобы не делать лишней работы и не засорять большой площади, и не слишком близко, чтобы избежать обратного осыпания земли. Рекомендуется гумусовый горизонт не смешивать в выбросах с другими горизонтами, чтобы при закрытии разреза его можно было снова положить сверху. Копая разрез, не следует забывать о том, что его необходимо будет также аккуратно засыпать, чтобы не портить угодий и не создавать опасности для людей и животных. Прямую (лицевую) стенку оберегают от обрушения и излишнего засорения. В сторону прямой стенки землю не выбрасывают, не складывают там и полевое снаряжение (обычно оно лежит в стороне или позади ямы), к ее краю близко не подходят.

В процессе копки разреза последовательно снимают слой за слоем землю, углубляясь всякий раз на штык лопаты. При этом вскрываются различные горизонты, что бывает уже очевидным при самом рытье ямы. Рекомендуется из каждого нового горизонта отложить в сторону лопату земли — это будет еще не образец для анализа, а просто материал для предварительного или дополнительного просмотра.

Когда разрез готов, с его дна откладывается на бумагу образец, так как в дальнейшем на дно ямы будет насыпано много смешанного материала, что затруднит взятие самого глубокого образца.

В условиях близкого стояния грунтовых вод или залегания вечной (многолетней) мерзлоты глубина почвенного разреза лимитируется этими факторами, как в горах близким залеганием скальных пород или сплошной массы грубообломочного материала.

Выделение генетических горизонтов почв значительно облегчается, когда исследователь сам копает шурф: тогда все, даже не очень яркие особенности структуры, плотности, цвета, увлажнения становятся очевидными. Не останутся незамеченными и включения, новообразования, которых может быть и немного, так что на стенках шурфа, при его описании, их можно и не увидеть. Это не может считаться обязательным правилом, но для начинающих исследователей самостоятельная копка шурфа может быть очень полезной.

Имея уже готовый разрез, необходимо зачистить его лицевую стенку лопатой, повернув ее при этом так, чтобы зачистке не мешала насаженная рукоятка. Можно зачищать и ножом. Одну сторону лицевой стенки сверху донизу препарируют легким втыканием ножа, чтобы лучше проследить изменение структуры почвы, ее плотности, цвета по граням отдельностей. Вторая часть стенки для сравнения остается гладкой.

После этого к верхнему краю лицевой стенки подвешивают на булавке сантиметр и на ней выделяют (прочерчивают ножом) генетические горизонты почвы по совокупности наблюдаемых признаков (цвет, структура, плотность и т.д.). Весь профиль проверяют на вскипание от десятипроцентного раствора соляной кислоты. Это следует делать во всех случаях, в том числе на разрезах с дерново-подзолистыми почвами, хотя, как правило, карбонаты там вымыты на большую глубину. Могут встретиться неожиданные случаи концентрации карбонатов и в дерново-подзолистых почвах, если близко к поверхности залегает элювий известняка либо другие карбонатные породы, либо имеет место подпитывание почвы жесткими грунтовыми водами, если не сейчас, то в прошлом.

М. А. Глазовская рекомендует выделение горизонтов производить как заключительный этап описания разреза, после того как каждый из наблюдаемых параметров (цвет, влажность и т.д.) будет описан в отдельной графе и зарисован также в отдельных колонках. Рекомендуется кроме опробывания соляной кислотой сделать по всему профилю полевое определение кислотности и легко растворимых солей (для Cl и SO4 ).

Далее составляют описание почвенного профиля по генетическим горизонтам. В бланке делают схематическую зарисовку профиля (желательно с натурными мазками из всех горизонтов). Горизонты индексируют, записывают их мощность (глубину верхней и нижней границ от поверхности почвы в сантиметрах) и все другие показатели в следующем порядке: цвет (окраска), влажность, механический состав, структура, плотность, сложение, новообразования, включения, наличие и обилие корней растений, следы деятельности животных, мерзлота (многолетняя или сезонная), граница и характер перехода в нижележащий горизонт.

Приведем (с небольшими дополнениями) индексировку генетических горизонтов почв, разработанную еще В. В. Докучаевым, широко используемую и в наше время, правда, в публикациях мы нередко встречаемся и с иными индексами почвенных горизонтов. Оговоримся также, что в настоящее время уже разработана новая классификация почв, но она еще не получила широкого применения.

Горизонта0 - верхняя часть почвенного профиля - подстилка, войлок, грубый гумус, образовавшиеся в результате разложения опада растений. Этот горизонт, в свою очередь, разделяется на:

а0 I - свежий, не теряющий своей первоначальной формы опад;

А0 II - полуразложившиеся органические остатки с сильно измененной первоначальной формой;

А0 III - полностью разложившаяся гомогенная подстилка.

Горизонт А (А1 А1 I, А1 II) - гумусовый, наиболее темноокрашенный в почвенном профиле; в нем происходит накопление органического вещества в форме гумуса, тесно связанного с минеральной частью почвы.

Ад - дерновый горизонт -часть горизонта А, густо пронизанная корнями травянистых растений;

Ап - перегнойный горизонт -разложившаяся органическая масса;

Ат - торфянистый горизонт.

Апах и А(пах) - пахотный горизонт и бывший пахотный могут включать как гумусовый, так и ближайшие нижележащие горизонты.

Горизонт А2 - горизонт вымывания (подзолистый или осолоделый, элювиальный),формирующийся под влиянием кислотного или щелочного разрушения минеральной части. Расположен под а0 или а1. Цвет обычно более светлый; обеднен гумусом и другими соединениями, в том числе и илистыми частицами за счет вымывания их в нижележащие слои. Относительно обогащен остаточным кремнеземом.

Горизонт А2 В - соответствует элювиальной зоне (без четких границ), переходный между элювиальным и иллювиальным горизонтами.

Горизонт В - горизонт вмывания (иллювиальный)располагается под элювиальным горизонтом. Это бурый, охристо-бурый, красновато-бурый, уплотненный, более тяжелого механического состава, хорошо оструктуренный горизонт, где накапливается ряд веществ за счет вымывания их из вышележащих горизонтов.

В почвах, где не наблюдается существенных перемещений веществ в почвенной толще, горизонт В является переходным слоем к почвообразующей породе. В этом случае он может записываться в скобках (В). По гумусовой окраске горизонт В может подразделяться на: В1 - с преобладающей или значительной гумусовой окраской, В2 - с более слабой и неравномерной гумусовой окраской и В3 - подгоризонт окончания гумусовых затеков. Впрочем, гумусовой окраски может и не быть, но коллоидные пленки, показывающие степень вмывания в горизонте В, всегда присутствуют и, если их окраска не одинаковой интенсивности, то можно также выделить подгоризонты В1, В2 и т.д.

Горизонт Вк - карбонатный, с вторичным выделением карбонатов в виде новообразований: мучнистой присыпки, налетов, прожилок, псевдомицелия, белоглазки, дутиков, журавчиков.

Горизонт G - глеевый, характерен для почв с постоянным избыточным увлажнением, с сизой, серо-голубой или грязно-зеленой окраской, нередко с ржавыми и охристыми пятнами (особенно в сухое лето).

Горизонт С - почвообразующая (материнская) порода, на которой (правильнее, из которой) сформировалась данная почва, не затронутая специфическими почвообразующими процессами (аккумуляцией гумуса, элювиированием и т.д.).

Горизонт Д - подстилающая горная порода, залегающая под почвообразующей и отличающаяся от нее по своим свойствам (главным образом по литологическому составу). Иногда горизонтом Д называют подстилающие плотные породы.

В случае переходного характера горизонтов, как это отчасти отмечалось выше, их обозначают комбинированными индексами, например: А1 А2, А2 В, ВС.

Кроме основных индексов применяется еще целый ряд дополнительных (некоторые из них уже указывались выше).

Индексы, показывающие аккумуляцию: h - иллювиальный гумус; f - иллювиальное железо, t - иллювиальная глина.

Индексы, показывающие следы аккумуляции некоторых солей: са - карбонатов кальция; cs - сульфатов кальция, sa - прочих растворимых солей.

Индексы, показывающие локальную или общую цементацию: сп - наличие железистых, марганцовистых или фосфатных конкреций; m - наличие плотных массивных слоев; si - наличие цементации силикатных продуктов.

Используются и другие индексы, например: См - почвообразующая порода мерзлая; A2 g - подзолистый горизонт с признаками оглеения; A2( g ) - то же, с признаками слабого оглеения; Bt - иллювиальный горизонт с аккумуляцией глины; Bf - иллювиально-железистый горизонт; Вк - иллювиальный карбонатный горизонт и т.д. В случае обнаружения погребенного горизонта индекс последнего ставят в квадратные скобки или же сопровождают дополнительным индексом - погр.

Предусмотреть в этой работе все случаи различной индексации, как и различных особенностей почв, невозможно. Необходимо до выезда в поле ознакомиться с диагностическими признаками и индексацией тех почв, которые могут встретиться в районе работ. Если же в поле встретится что-то новое или непонятное, рекомендуется как можно более тщательное описание горизонтов (пусть временно не индексированных или не совсем правильно индексированных) и взятие образцов, по которым в дальнейшем можно будет определить почву.

Мощность горизонтов, как указывалось выше, записывают по положению верхней и нижней его границ по отношению к поверхности в сантиметрах. Например: a0 0-2 см, а1 2-12 см, А2 12-25 см и т.д. По такой же системе указывается в бланке глубина взятия образцов. Если мощность горизонта по лицевой стенке значительно колеблется, то система записи усложняется. Например: А1 2-12(20), А2 12(20)-25(30) см и т.д.

Приведем порядок описания горизонтов почв по классическому труду «Почвенная съемка» (1959). В более новых источниках часто повторяется то же самое, иногда с небольшими вариациями, иногда с опусканием некоторых подробностей.

Цвет, окраска.

Можно рекомендовать следующие наименования цветов.

Основной цвет: черный -интенсивно-черный, серовато-черный, серо-черный, буровато-черный, буро-черный; белый -желтовато-белый, палево-белый, розовато-белый, зеленовато-белый; желтый- буровато-желтый, охристо-желтый, зеленовато-желтый; серый- буро-серый, темно-серый, светло-серый, белесо-серый, зеленовато-серый, голубовато-серый, сизый; бурый -черно-бурый, серо-бурый, темно-бурый, светло-бурый, желто-бурый, красно-бурый, зеленовато-бурый; красный -малиново-красный, ржаво-красный.

Цвет почвенного горизонта - очень важный диагностический признак, зависящий от генезиса почвы: от породы, на которой она формируется, от климатических условий, от уровня залегания грунтовых вод, растительности, словом, от всех тех факторов и процессов, которые приводят к возникновению определенных разновидностей почв с характерными для них горизонтами.

Есть замечательная книга А. Е. Ферсмана «Цвет в природе», с которой каждому исследователю природы следует ознакомиться. О цвете почвы (почвенных горизонтов) хорошо сказано у В. В. Добровольского. Он в доходчивой форме поясняет: черный цвет и его интенсивность связаны с процессом разложения органического вещества и накоплением гумуса, перегноя, торфа; бурый - с накоплением окислов железа; коричневый - с одновременным накоплением гумуса и железа; сизый - с закисными соединениями железа; белесость и белая присыпка могут быть связаны с элювиальными процессами - выносом растворимых веществ и накоплением аморфного кварца или же, напротив, с иллювиальными новообразованиями углекислого кальция - мучнистой присыпки. Последнюю легко определить по вскипанию от соляной кислоты или же уверенно предположить ее присутствие, исходя из общей зональной ситуации.

Кроме названных цветов можно употреблять и другие: коричневый, палевый или, например, ржавый, кирпичный, шоколадный. Желательно иметь в экспедиции образцы цветовых шкал Манселла.

Влажность почвы записывают после (или до) характеристики цвета, так как цвет почвы меняется при разном увлажнении. За основу можно принять следующие градации: сухая почва- пылит; свежая -не пылит, слегка холодит руку; влажная -обнаруживает признаки влажности, сжимается рукою в комки, бумага, приложенная к почве, быстро сыреет; сырая -увлажняет руку и прилипает к ней; мокрая- из стенок шурфа сочится вода.

Рекомендуется также отмечать погодные условия в момент описания и незадолго до того. Например, «ясная погода, накануне был сильный дождь» или «ясная погода, неделю не было дождя».

Механический состав при описании почвенного разреза определяется обычно пробой на скатывание. Для этого пробу (при необходимости) слегка увлажняют. Существуют следующие градации механического состава: глинистый, суглинистый, супесчаный, песчаный. Остается добавить скелетный, когда проба состоит из обломков плотных пород (хряща, щебня, гальки, валунов), смешанных с мелкоземом. Если отбросить крупные (скелетные) частицы, то остальная почвенная масса обнаруживает свойства одной из перечисленных выше групп.

Суглинки делятся на легкие, средние и тяжелые. Последние приближаются к глинам и могут давать очень тонкие и острые концы шнура, которые при скатывании долго крутятся, не отрываясь от основной массы. Для средних суглинков характерны более тупые концы шнура и меньшая пластичность. Легкие суглинки дают короткий шнур с рваными концами, слабо пластичный.

Вязкость и пластичность глины, сыпучесть песка также относятся к характеристике механического состава.

Структура почвы— ее способность распадаться на отдельности определенной формы. Очень хорошо прослеживается при рытье шурфа, когда сбрасываемый с лопаты материал рассыпается мелкими зернами, угловатыми комочками, плитками, глыбами и т.д.

Обычно для определения структуры берут из каждого горизонта ножом или лопатой куски почвы и, подбрасывая их на ладонях или разламывая при слабом нажатии, смотрят, какую форму и какие размеры имеют образовавшиеся отдельности и насколько они прочны. Структуру можно рассмотреть и при препарировании стенки шурфа, а также в выбросах из него и в отложенных для просмотра образцах.

Ниже приводится развернутый перечень типов почвенных структур с указанием размерностей почвенных агрегатов. Начинающим полевые исследования необходимо иметь его при себе и не экономить время на измерение структурных отдельностей. С приобретением опыта необходимость в этом отпадает.

Типы почвенных структур

I тип. Структурные отдельности развиты равномерно по всем трем перпендикулярным осям (общая форма отдельностей округло-многогранная).

А. Грани и ребра выражены неясно, отдельности плохо оформлены         Структура                   Диаметр отдельностей, см

Глыбистая

                                                                                                                            крупноглыбистая                              более 10

                                                                                                                             мелкоглыбистая                                10 - 5

                                                                                                                            крупнокомковатая                               5 - 3

Комковатая

                                                                                                                              среднекомковатая                                 3 - 1

                                                                                                                             мелкокомковатая                                 1 – 0,5

Б. Грани и ребра хорошо выражены, отдельности ясно оформлены

Структура                                                                                                                                                   Диаметр отдельностей, мм

крупноореховатая                                                                                                                                                       20 - 10

ореховатая                                                                                                                                                                    10 - 7

мелкоореховатая                                                                                                                                                           7 - 5

Зернистая

крупнозернистая                                                                                                                                                           5 - 3

зернистая                                                                                                                                                                        3 - 1

пороховидная                                                                                                                                                                1 – 0,5

II тип. Структурные отдельности более развиты по вертикальной оси (общая форма отдельностей призмовидная, вытянутая вверх).

А. Верхушки отдельностей закруглены

Структура                                                                Поперечник отдельностей, см

крупностолбчатая                                                             более 5

столбчатая                                                                            5 - 3

мелкостолбчатая                                                               менее 3

Б. Верхушки отдельностей ограничены плоскими гранями

Структура                                                                 Поперечник отдельностей, см

крупнопризматическая                                                     более 5

Призматическая призматическая                                        5 – 3

мелкопризматическая                                                           3 – 1

тонкопризматическая                                                         менее 1

III тип. Структурные отдельности более развиты по двум горизонтальным осям и укорочены по вертикальной оси (общая форма отдельностей уплощённая).

Структура                                                                 Толщина (вертикальная ось), мм

сланцеватая                                                                             более 5

Плитчатая плитчатая                                                               5 – 3

пластинчатая                                                                             3 – 1

листоватая                                                                                менее 1

скорлуповатая                                                                          более 3

Чешуйчатая грубочешуйчатая                                                3 – 1

мелкочешуйчатая                                                                    менее 1

крупнолинзовая                                                                    более 10

Линзовидная мелколинзовая                                                   10 – 3

чечевичная                                                                               менее 3

Почвенные агрегаты менее 0,5 мм относятся к микроструктуре. Почвы с такими мелкими отдельностями в поле условно считаются бесструктурными.

Плотность почвы, как и структура, хорошо определяется при копке ямы и прослеживается по стенке шурфа. При ее определении можно руководствоваться следующим:

очень плотная или слитная почва - копать невозможно, приходится долбить, острие ножа не входит в почву, нож оставляет на стенке тонкую глянцеватую черту;

плотная почва копается с трудом, кончик ножа при нажиме входит в почву на 1 - 2 см, черта от ножа более глубокая, с тусклым отблеском;

слабоуплотненная почва легко копается и при выбросах рассыпается на отдельности, нож входит в стенку довольно свободно, на несколько сантиметров, черта от ножа глубокая, ровная или шероховатая, без блеска;

рыхлая почва сыплется;

пухлая почва при надавливании легко сжимается, нога оставляет глубокий след (например, свежеобработанные почвы садов и огородов, пухлые солончаки и т.д.).

Сложение - порозность (или трещиноватость) почвы.

Понятие порозности включает как размер пор или трещин, пронизывающих почву, так и их обилие. Это трубочки, канальцы внутри структурных отдельностей или сплошной почвенной массы.

По размеру пор различают:

Сложение                              Диаметр пор, мм

тонкопористое                         менее 1

пористое                                   1 - 3

губчатое                                      3 - 5

ноздреватое или дырчатое       5 - 10

ячеистое                                   более 10

В том случае, если почва обладает тонкопористым сложением, удобно пользоваться лупой. По обилию пор различают:

Пористость почвы (обилие пор)           Промежутки между порами, см

Слабопористая                                                 1,5 и более

Пористая                                                              1

Сильнопористая                                               0,5 и менее

По размеру трещин различают:

Сложение                                                   Ширина трещин, мм

тонкотрещиноватое                                        менее 3

трещиноватое                                                    3 – 10

щелеватое                                                          более 10

Трещины располагаются между структурными отдельностями или в бесструктурной почвенной массе.

Новообразования возникают в почве в процессе ее формирования и представляют собой различные формы скопления веществ, выделяющихся на общем фоне почвенной массы. Новообразования сульфатов, хлоридов, гипса, карбонатов, окисей железа, алюминия и др., закиси железа, кремнезема имеют разную окраску и разнообразные формы.

Легкорастворимые соли — хлориды (NaCl, MgCl2, KC1) и сульфаты (Na2 SO4 и MgSO4 ) дают новообразования белого цвета — налеты и выцветы, корочки, крапинки, «червячки», жилки, щеточки «инея». Выделения гипса также могут давать белые крапинки, «точки», жилки, натечные «бородки», кристаллы, друзы и целые прослойки (коры).

Карбонаты (СаСО3 и MgCO3 ) дают белого цвета «сединку», «плесень», псевдомицелий (или лжегрибницу), белоглазку, журавчики, дутики, желваки, «бородки», сплошное или пятнистое пропитывание почвенной массы.

Окислы (Fe2 O3, A12 O3, МnО4, Р2 О5 ) образуют ржавые, охристые, красные, бурые и черные образования в виде натеков, примазок, псевдофибров, рудяковых зерен, дробин, желваков, полос, прослоек и плит (ортштейн, жерства).

Закиси железа дают сизые или зеленоватые пленки, примазки, разводы, буреющие на воздухе, или белые жилки вивианита, приобретающие на воздухе синюю окраску.

Кремнезем образует белую присыпку, пятна, тонкие прожилки и «бородки».

Несмотря на обилие и разнообразие форм новообразований, полевое их определение в подавляющем большинстве случаев не очень сложно. Знание процессов почвообразования и характерных новообразований для разных зональных условий и разных типов почв позволяет избегать многих ошибок. Кроме того, все новообразования углекислого кальция (карбонаты) легко распознаются по реакции на соляную кислоту. Что же касается множества названий, употребляемых для определения разных форм новообразований, то в случае затруднений следует своими словами описать размеры, форму, плотность, цвет новообразований, не давая им собственного названия.

Включения —валуны, гравий, галька, кости, черепки, кирпичи и т.д. - предметы, встречающиеся в почве, но не связанные непосредственно с почвообразованием. Наличию в почве каменистого материала приходится уделять специальное внимание: в горных условиях, а часто и на равнине (в моренных областях, на зандровых равнинах, в местах выходов на поверхность или близкого залегания скальных или полускальных пород).

При визуальном определении степени насыщенности почвы камнем можно принять следующие градации каменистости почв:5-10% - слабокаменистые,10 - 20% - среднекаменистые,20- 40 % - сильнокаменистые, более 40 % - очень сильнокаменистые.

Для более точного определения каменистости выбирают учетные площадки размером 1 - 4 м2, на которых в 30-сантиметровом слое почвы определяют объем каменных включений (не менее 5 см в диаметре).

Следует также указывать размеры каменных включений и их состав.

Корневую систему и формы жизнедеятельности организмов(ходы червей и их выбросы — капролиты, ходы грызунов — кротовины и др.) тоже можно рассматривать как включения. Их можно описывать как в каждом горизонте, так и в конце всего описания, но обязательно с указанием, где наблюдается наибольшее сосредоточение корней, кротовин, капролитов и пр. При ландшафтно-геохимических исследованиях важно определить хотя бы ориентировочно процент корней, содержащихся в каждом горизонте от общего их объема. Например, объем корней в горизонтах: А1 - 50 %, В - 30 %, С - 20 %, что в сумме составляет 100 %.

Мерзлота может быть явлением сезонным либо постоянным. Наличие и формы проявления мерзлоты указывают в бланке наряду с другими признаками почвенных горизонтов.

Описание каждого горизонта почвенного профиля заканчивается указанием четкости и формы его границы с нижележащим горизонтом. По степени выраженности границы можно подразделить на: резкие -изменения происходят в слое менее 5 мм, четкие -в слое 5 - 25 мм, ясные -в слое 25 - 60 мм, постепенные -в слое 60-130 мм, расплывчатые (диффузные) -изменения происходят в слое более 130 мм. Можно принять и более простую шкалу, переход: резкий - 2 - 3 см, ясный - 3 - 5 см, постепенный - более 5 см.

По форме границы могут быть сглаженные (с небольшими неровностями), волнистые (граничная поверхность имеет широкие при их небольшой глубине относительно правильные «карманы»), неровные (граничная поверхность имеет «карманы», глубина которых превышает ширину), разорванные(прерывистые границы). Могут встретиться границы мелкоязыковатые и языковатые, при которых языки вышележащего горизонта (часто А2 ) могут разрывать границы нескольких горизонтов, проникая далеко в глубь почвенного профиля. Такие явления необходимо также фиксировать с указанием размеров языков.

Все перечисленные свойства почв, определяемые в поле визуально, дают подробную характеристику, позволяющую по сочетанию генетических горизонтов и степени их развитости назвать почву.

Полное название должно включать наименование типа и подтипа почвы; разновидность механического состава по верхнему горизонту; состав почвообразующей и подстилающей породы в случае близкого ее залегания к поверхности. Например: почва дерново-среднеподзолистая супесчаная на флювиогляциальных песках, подстилаемых моренным суглинком. При почвенной съемке профиль почвы считается двучленным, когда подстилающая порода залегает на глубине до 1 м от поверхности. В ландшафтных исследованиях подстилание, по возможности, указывают и при более глубоком залегании другой породы (примерно до 1,5 м), так как и при такой глубине смена пород оказывает существенное влияние на процесс почвообразования и на весь природный комплекс.

На карту также наносят индекс почвы по принятой системе. Например, индекс Пд2 сс/ПС150... означает, что это дерново-среднеподзолистая среднесуглинистая почва на покровных суглинках глубина шурфа 150 см. В случае подстилания мореной индекс может получить следующий вид: Пд2 сс/ПС120 + Мсугл150..., т.е. дерново-среднеподзолистая среднесуглинистая почва на покровных суглинках, подстилаемых с глубины 120 см моренным суглинком. Многоточие после цифры глубины ставят тогда, когда порода не пройдена до ее нижней границы. Может встретиться и трехчленный и еще более сложный почвенный профиль.

При частом чередовании слоев (например, песков, супесей, суглинков) допустимо выделение всей пачки слоев в один почвенный горизонт, если по другим признакам (гумусированности, ожелезнению и т.д.) он не делится на части. Такая ситуация часто встречается в поймах рек, где могут быть широко распространены пойменные слоистые легкосуглинистые глееватые почвы на слоистом супесчано-суглинистом аллювии. Почвенный индекс при этом может иметь такой вид: Адсл г1 лс/Асугл песч 100.

В завершение описания необходимо дать краткое, но в то же время полное название фации, а также отметить современные природные процессы и их интенсивность; влияние смежных ПТК; выраженность границ фации и ее дешифровочные признаки; место фации в структуре урочища (подурочища); антропогенное влияние на свойства фации. Если в подготовленных бланках таких граф не окажется, то все это следует записать в дневнике.

Выше отмечалась краткость описаний на картировочных точках и говорилось о том, что вместо шурфов там делают неглубокие прикопки. Но даже они далеко не всегда обязательны, если умело пользоваться методами ландшафтной индикации. Работая в том или ином регионе, мы должны всякий раз особое внимание уделять тесноте взаимосвязей между почвой и растительностью, растительностью и уровнем залегания грунтовых вод, выходом на поверхность карбонатных пород или засоленных грунтов и т.д. Тогда по растительным сообществам зачастую можно будет уверенно предположить наличие на точке наблюдения определенной почвы, не тратя времени и сил на рытье шурфов и подробное описание почвенного профиля. Наиболее интересны в этом отношении публикации С. В. Викторова.

Аэрофотоснимки также помогают выявлению сходных или отличных друг от друга ПТК и их особенностей. Например, на них легко различимы луговая пойма и покрытая сосновым лесом надпойменная терраса. Если же нет сосны, то по тому, как меняется общий фототон и его структура и как грунтовая дорога сильно осветленного тона разветвляется, можно заключить, что в этом месте уже не пойма, а песчаная надпойменная терраса. Ландшафтному дешифрированию принадлежит особая роль. И аэрофотоснимки необходимы на всех этапах исследования — и во время подготовительного периода, и в поле, и при камеральной обработке материалов.

Прочие дополнительные наблюдения

Геологические наблюдения производятся в основном на специализированных точках - естественных обнажениях (по крутым берегам долин рек и ручьев, в оврагах и реже в балках) либо в антропогенных комплексах (карьерах, свежевырытых канавах и ямах, вырытых для трубопроводов, силосования, закладки фундаментов зданий и других целей). Назначение геологических наблюдений - ознакомление с конкретной геологической обстановкой в дополнение к сведениям, почерпнутым из литературных и фондовых источников. Производят описание выходов пород, их состава и условий залегания, делают зарисовки на левой стороне листов полевого дневника и фотографирование. Самостоятельного значения эти наблюдения, как правило, не имеют, но как дополнение к уже имеющимся геологическим данным их используют постоянно.

Описание обнажений, сложенных рыхлыми и (или) плотными не метаморфизированными породами, начинается с тщательной его зачистки лопатой и (или) ножом (чем удобнее). Если обнажение больших размеров и частично заросло или покрыто осыпями, приходится делать расчистку в нескольких местах, передвигаясь сверху вниз и в ту или другую сторону, одновременно следя за тем, чтобы каждая нижележащая расчистка в своей верхней части повторяла (хотя бы частично) нижний горизонт вышележащей расчистки. Если это не удается, то в зарисовке разреза «неопознанные горизонты» оговаривают особо с указанием причины разрыва последовательного описания горизонтов. Описание, как правило, производят сверху вниз. Для каждого горизонта записывают: его мощность в метрах или сантиметрах, измеряемую (по вертикали) обычным швейным сантиметром либо рулеткой или рейкой; название породы и ее характеристику (цвет, структуру, плотность, пористость, трещиноватость, наличие и обилие, а также характер распространения включений других пород); характер границы или постепенного перехода. А. И. Спиридонов рекомендует сделать также плановую зарисовку (или фотографирование) обнажения. Разумеется, если в обнажении встретились неопознанные породы, то следует взять смотровые образцы для консультации со сведущими специалистами непосредственно в районе полевых работ или же по возвращении с поля.

Следует также отметить, что выходы коренных пород или их элювия могут встретиться и на междуречных пространствах, нередко на пахотных землях. Их тоже нужно обязательно показывать на полевой карте и фиксировать в дневнике. Непосредственная близость к дневной поверхности или выход на нее коренных пород может существенно изменить геохимическую обстановку, а вслед за этим процессы почвообразования и характер естественной растительности или агрофитоценозов.

Специальные геоморфологические наблюдения

также необходимы в комплексных физико-географических исследованиях и ландшафтном картографировании. Как и геологические, их нередко проводят в самом начале полевых работ, в процессе рекогносцировки, но могут осуществлять и позже. Более раннее изучение форм рельефа и геологического строения территории целесообразно потому, что именно литогенная основа является главным фактором перераспределения тепла и влаги, что, в свою очередь, в большой степени влияет на биокомпоненты и, в конечном счете, на формирование природных территориальных комплексов.

Геоморфологические наблюдения нацелены на первичное ознакомление в поле с основными формами рельефа разного генезиса, рассмотренными ранее в подготовительный период по имеющимся текстовым характеристикам и картам. В дневнике записывают общий вид тех или иных форм рельефа, параметры размеров, характер и крутизну склонов, по возможности, и состав слагающих их пород или состав пород, в которых образовались исследуемые формы (для отрицательных форм рельефа). А. И. Спиридонов рекомендует наряду с фотографированием делать контурные и штриховые зарисовки, которые могут достаточно выразительно и полно изобразить рельеф: характер его эрозионного расчленения, форму склонов, террасированность поверхности и другие особенности. Он советует одну и ту же территорию фотографировать в разных планах (общем, среднем и крупном), а также с разных сторон для более полной передачи характерных особенностей рельефа. Применение широкоугольных объективов и телеобъективов дает возможность запечатлеть обширную местность в довольно мелком масштабе или же небольшой участок крупным планом. В настоящее время большую популярность приобрели цифровые фотокамеры, имеющие большие преимущества по сравнению с обычными фотоаппаратами.

Микроклиматические наблюдения Микроклиматические наблюдения наиболее интересны по профилю - ландшафтной катене. При этом основной их принцип - единовременность определения метеорологических элементов на разных точках, расположенных в различных физико-географических условиях. Это практикуется чаще на стационарах (требуется много приборов и людей одновременно), но иногда и в экспедиционных условиях.

На стационарах удобно вести срочные наблюдения, непрерывную запись, а также вертикальный срез метеохарактеристик: профиль скорости ветра, профиль температуры, влажности и т.д. над каждой точкой в приземном слое воздуха.

Полученные данные можно с известной уверенностью распространять на значительную площадь, обладающую аналогичными физико-географическими условиями.

Гидрологические наблюдения

Гидрологические наблюдения в полевой период комплексных физико-географических исследований производят на малых естественных гидрологических объектах и на колодцах. Большие реки и озера, как правило, хорошо изучены регулярными наблюдениями гидрометеослужбы, и разрозненные замеры случайного сезона мало что могут прибавить к тем систематическим характеристикам, которые уже имеются по этим объектам. К тому же исследования на них слишком специальны и не могут производиться одновременно с комплексным физико-географическим изучением территории, а требуют особой программы, других видов снаряжения, оборудования и средств передвижения.

В то же время наблюдения над малыми объектами почти всегда дают много нового материала, нигде еще не зарегистрированного, или, может быть, повторяют такие же кратковременные и редкие наблюдения гидрометслужбы и тем самым дают более надежную характеристику объекта. Для родников записывают условия выхода вод на поверхность, породу водоносного и нижележащего водоупорного горизонтов, замеряют расход воды. В ручьях и небольших речках замеряют скорость течения и расход, записывают сведения о ширине и глубине водотоков, отмечают следы подъема вод в половодье, характер донных наносов, наличие и видовой состав водных растений.

Для озер описывают форму и глубину, а также донные отложения и растительность.

Во всех случаях фиксируют цвет, запах, мутность, вкусовые качества воды. Разумеется, что водный объект нельзя «вынимать» из окружения, поэтому его характеристику дополняют краткими сведениями о берегах и прилегающей территории, а также о прямом или косвенном антропогенном воздействии.

Внимательному изучению подвергаются колодцы. В них замеряют глубину зеркала воды и дна колодца, определяют качество воды. В отдельных случаях производят пробную откачку для замера дебита. Работа над колодцем, более чем всякая другая, может вызвать недовольство местных жителей. Поэтому необходимо получить на нее разрешение владельца или органа общественной власти.

В зависимости от масштаба работ и программы экспедиции водные источники обследуют сплошь по всей территории (крупный масштаб, мелиоративная ориентация работ) или же выборочно, в наиболее типичных местах. Записи производят в дневниках или специальных бланках, журналах.

Зоогеографические наблюдения

могут являться частью комплексных физико-географических исследований, но они также очень специфичны по своей методике, требуют особой подготовки, почему и проводятся обычно не попутно, а специально. Однако пренебрегать попутными зоогеографическими наблюдениями все же не следует. Рекомендуется отмечать не только животных, птиц и других представителей фауны, встреченных на точках описания или по маршруту, но и следы их пребывания. Например, помет лося или следы его кормежки (обглоданные стволы и ветки осины и других деревьев), пятна разрытой кабанами земли, выбросы крота, гнезда птиц и т.д.

Дендрохронологические исследования

В настоящее время появилось достаточно много работ, освещающих использование дендрохронологического метода в комплексных физико-географических исследованиях. Этот метод незаменим при исследовании пространственно-временной изменчивости функционирования геосистем и выявлении природных и антропогенных факторов такой изменчивости. Поэтому наряду с традиционными разделами дендрохронологии — дендроклиматологней, дендрогидрологней, дендрогляциологией, дендроархеологией и т.д. - можно говорить о становлении нового направления - дендроландшафтологии, или ландшафтной дендрохронологии (термин Ю. Г. Пузаченко).

Базовые методологические принципы дендрохронологических исследований были сформулированы X. Фриттсом. Первым из них является принцип лимитирующего фактора. На рост растения наибольшее влияние оказывает тот фактор среды, который является наиболее ограниченным или недостаточным, т. е. находится в минимуме. Например, если таким фактором является годовое количество осадков, то величина радиального прироста древесины в наибольшей степени будет зависеть от количества осадков, выпавших за исследуемый год. Данный принцип является частным проявлением известного закона фактор-минимума К. Либиха.

Следующий принцип — принцип совместного действия факторов роста дерева. Очевидно, что каждая серия приростов древесины является совокупным «продуктом» действия различных факторов среды как природных, так и антропогенных, которые постоянно воздействуют на прирост. Например, прирост ( R ) за один год (t) является функцией совокупного действия следующих факторов:

нормального годового прироста соответствующего возрасту дерева (А);в благоприятных условиях приросты в молодом растении незначительны, но увеличиваются с годами, достигая максимума и оставаясь большими в течение всего периода приспевания; в спелом состоянии прирост уже несколько ослаблен, а в перестойном существенно снижен;

гидроклиматических факторов, влияющих на прирост в течение данного года (С);

проявления возмущающих факторов внутри лесного сообщества, например вспышки размножения насекомых-вредителей, вызывающей снижение приростов (D 1);

проявления внешних для лесного сообщества возмущающих факторов, например вырубки, ветровала (D 2 );

случайного процесса (Е),не входящего в перечисленные.

Суммируя все факторы, получим уравнение

Rt = А t + С t +δD 1 + δD 2 + Е t,

где δ перед D 1 и D 2 обозначает отсутствие (0) или наличие (1) возмущающего сигнала. Таким образом, если необходимо усилить сигнал одного из факторов среды, влияние других факторов должно быть ослаблено. Например, при изучении воздействия на прирост климатических факторов нам необходимо избавиться от влияния фактора возраста, а также внутренних и внешних для данного дерева и сообщества возмущающих процессов. Такая процедура носит название стандартизации. Устранение посторонних факторов производится различными статистическими методами, для чего разработаны специальные компьютерные программы, например ARSTAN.

Принцип экологической амплитуды. Этим принципом определено, что растения бывают наиболее чувствительны к факторам окружающей среды на широтных и высотных границах ареалов их распространения. Этим необходимо руководствоваться при отборе образцов, особенно для видов с широкой экологической амплитудой.

В соответствии с принципом выбора местообитания для отбора образцов необходимо выбирать такие фации, в которых прирост древесины наиболее чувствителен именно к тому фактору, который будет изучаться. Из этого следует, что для изучения повторяемости засух образцы для датировки следует отбирать в районах с недостаточным увлажнением.

Принцип перекрестного датирования.

Данный принцип позволяет, сопоставляя серии приростов нескольких образцов, выявить одинаковые серии, относящиеся к одному и тому же времени. Например, год постройки деревянного строения можно определить, сопоставляя серии приростов образцов древесины, взятых из этого строения, с сериями приростов живых деревьев. Перекрестно датируя живую, умершую и погребенную древесину, отобранную в одном районе, можно построить довольно продолжительные региональные дендрошкалы. В настоящее время в мире построено несколько абсолютных непрерывных хронологий до 10 - 12 тыс. лет.

В неблагоприятных местообитаниях часто наблюдается выпадение годичных колец, т.е. прирост древесины отсутствует в пределах отдельной части или всей окружности ствола. Поздние и ранние заморозки, временные засухи и другие условия, сопровождающиеся последующим возобновлением прироста, часто приводят к образованию множественных колец, состоящих из нескольких «ложных». С помощью перекрестного датирования образцов, взятых из разных деревьев, но в одном местообитании, мы можем выявить такие кольца и избежать ошибки. Для этого также разработаны специальные компьютерные программы, например COFECHA.

Принцип массовости

Заключается в том, что чем больше образцов взято с одного конкретного дерева и с большего количества деревьев в пределах местообитания, тем более точными с точки зрения статистики будут полученные данные. С. Г. Шиятов, Е. А. Ваганов и др. рекомендуют отбирать образцы с 15 - 30 деревьев в пределах одного местообитания (в экстремальных условиях роста достаточно 10 - 15), а с каждого дерева - по двум радиусам. Опыт показывает, что в пределах многих фаций, особенно болотных, количество деревьев может составлять всего 3 - 5 единиц. В таких случаях отбирают керны из всех существующих деревьев.

Ландшафтно-дендрохронологическое исследование делится на пять этапов.

На первом этапе важно четко определить основные цели и задачи будущего исследования: какие факторы, влияющие на прирост деревьев, необходимо выявить в первую очередь, какова должна быть продолжительность хронологии и т.д. Полевые работы при ландшафтно-дендрохронологических исследованиях могут выполняться самостоятельно, а могут выступать как одно из направлений при комплексных физико-географических исследованиях.

Второй этап - выбор места отбора образцов и определение породы деревьев. В зависимости от поставленной задачи выбирают пробные площади. Они могут быть привязаны к доминирующим фациям разных ландшафтов, чтобы по полученным результатам можно было выявить синхронность (или асинхронность) колебаний прироста древесины в изучаемых ландшафтах в зависимости от общих изменений климатических условий. Очень часто пробные площади располагают по линии профиля, особенно когда основyая цель - выявление реакции древостоя на колебание уровня грунтовых вод (подтапливание или осушение) и местных или микроклиматических условий под воздействием геотехнических систем (водохранилищ или осушительных каналов). При выборе площадей необходимо руководствоваться принципом лимитирующего фактора, принципом экологической амплитуды и принципом выбора местообитания.

Выбор породы деревьев - также очень важный момент, поскольку породы различаются между собой продолжительностью жизни, плотностью древесины, выраженностью годичных колец. Чаще всего для изучения временных изменений прироста древесины на территории Восточно-Европейской равнины используют хвойные виды: сосну обыкновенную ( Pinus sylvestris L.), ель европейскую, или обыкновенную ( Picea abies (L.) Karst.), ель сибирскую ( Picea obovataLedeb.), лиственницу сибирскую ( Larix sibiricaLedeb.) и европейскую, или опадающую ( L. decidua Mill.), пихту сибирскую ( Abies sibiricaLedeb.). Их древесина обладает невысокой плотностью, а границы колец видны хорошо. В горных районах это могут быть сосна горная ( Pinus montana (L.) Mill.), стланиковые древесные породы. Возможно использование дуба, ясеня, в меньшей степени березы, черной ольхи, осины (в связи с затрудненностью прослеживания и измерения годичных колец).

На третьем этапе осуществляют отбор образцов - кернов. Керны (цилиндрики древесины) для дендрохронологического анализа берутся возрастным буром Пресслера. Для хвойных и лиственных пород применяют разные буры, отличающиеся маркой стали. Кроме того, буры различаются по диаметру и длине; сейчас наиболее распространенными являются буры диаметром 5 и 12 мм и длиной 20, 25, 30, 40, 45, 50, 60 и 75 см. Если радиус дерева очень большой, то сначала берут керн буром длиной до 40 см, а затем в это же отверстие вставляют более длинный бур. Керны берутся на высоте 1,0-1,3 м от земли. Сверление производится строго перпендикулярно к продольной оси дерева и так, чтобы бур прошел через сердцевину или вблизи нее. Не рекомендуется брать керны с деревьев больных, поврежденных или гнилых, за исключением тех случаев, когда выясняют влияние вредителей, заболеваний, механических травм, пожаров и т.п. на прирост древесины. Количество образцов, взятых с одного местообитания и из каждого дерева, устанавливают принципом массовости. Необходимо отметить, что для каждой фации, в которой производится отбор образцов при ландшафтно-дендрохронологическом исследовании, обязательно выполняется комплексное физико-географическое описание.

Керны очень хрупки, поэтому для их хранения и транспортировки существуют различные приспособления. Из бумаги или полиэтилена изготавливают специальные контейнеры, внутренний диаметр которых на 2 - 3 мм больше диаметра образца, затем их помещают в картонные коробки. Можно использовать фотографические кюветы, вставленные одна в другую, с днищами, покрытыми тонким слоем пластилина.

В некоторых случаях, когда из-за трещин и гнилей невозможно отобрать керны (сухостой, валеж, полуископаемая, строительная древесина), приходится брать поперечные спилы деревьев. Раньше спилы отбирались и со здоровых деревьев, однако в настоящее время это практикуется крайне редко. Кроме того, наиболее старые одиночные деревья и лесные насаждения в европейской части страны, как правило, находятся под особой охраной.

На четвертом этапе производят первичную обработку данных: измерение ширины годичных колец, верификацию измерений методом перекрестного датирования (устранение ложных и фиксация выпавших колец), а также стандартизацию хронологии, т.е. устранение посторонних факторов (главным образом фактора возраста дерева). В результате получают не абсолютные значения, а так называемые индексы приростов, которые анализируют на заключительном этапе.

Для подсчета ширины годичных колец существуют специально сконструированные полуавтоматические комплексы, включающие бинокулярный микроскоп, двигающийся столик с подключенным к нему приспособлением, преобразующим электронный сигнал в цифровой, прерыватель сигнала и компьютер со специальным программным обеспечением. Чтобы измерить ширину кольца, предварительно отшлифованный наждачной бумагой керн или спил закрепляют на столике. Вертикальную линию измерительной линейки микроскопа совмещают с границей первого кольца, делают отметку, а затем перемещают столик с образцом древесины до границы следующего кольца и снова делают отметку. Данные автоматически заносятся в компьютер. Точность измерений составляет от 0,01 до 0,05 мм. Соответствующее программное обеспечение не только принимает измерения от столика, но позволяет сразу провести первичную обработку и получить индексы приростов. Однако такая аппаратура стоит очень дорого и имеется пока не во всех научных учреждениях.

В обычной практике отшлифованные керны сканируют сканером с разрешением не менее 600 dpi. Изображение можно корректировать, изменяя яркость, контрастность и другие параметры, чтобы границы колец были максимально различимы. С помощью специальных программ исследователь обозначает эти границы «мышью», а ширина колец (расстояние между отметками) рассчитывается уже автоматически. Данные представляют в виде колонки с абсолютными значениями приростов. Верификацию и стандартизацию хронологий проводят специальными компьютерными программами, например уже упомянутыми COFECHA и ARSTAN. Эти две программы предоставляются бесплатно через сеть Интернет.

Существуют и еще нередко применяются простейшие методы подсчета и измерения ширины годичных колец по кернам с помощью бинокулярной лупы (микроскопа) МБС-1 с 16- или 8-кратным увеличением, позволяющим достигнуть точности 0,05 - 0,1 мм. Этот метод достаточно трудоемкий, поскольку полученные данные вводят в компьютер вручную, однако его можно применять и в полевых условиях для получения предварительных результатов.

На последнем, пятом, этапе производится статистическая обработка полученных индексов прироста. Выбор методов и способ представления окончательных результатов зависит от поставленных на первом этапе целей и задач. Как правило, для сравнения хронологий между собой вычисляют коэффициенты корреляции, ковариации, синхронности и чувствительности. Применяют также кластерный, регрессионный и другие виды анализа. По материалам физико-географических описаний, а также используя метеоданные, производят факторный анализ, позволяющий выявить факторы динамики приростов.

Результаты исследования представляют в виде графиков хронологий - кривых прироста. Строят как индивидуальные, так и сводные кривые, которые получают путем осреднения данных по фациям и урочищам. Хронологии для ПТК ранга местности и ландшафта строят на базе хронологий доминирующих фаций. Для каждого вида деревьев строят отдельные кривые приростов.

В отчет о ландшафтно-дендрохронологических исследованиях включают также данные статистического анализа (таблицы, графики, дендрограммы и т.д.). Точки отбора образцов целесообразно нанести на ландшафтный профиль или ландшафтную карту. На карту могут быть нанесены и результаты исследований в виде изолиний одинакового прироста за определенный период (изоэпидоз).

Наблюдения на точках дают фактический материал, по мере накопления которого у исследователя складывается представление об основных взаимосвязях между отдельными компонентами природы и между разными ПТК, а также об условиях хозяйственного использования территории.

Маршрутные наблюдения между точками комплексных описаний дополняют последние и фиксируются в дневнике. По своему содержанию и объему они могут быть очень различными в зависимости от масштаба и целевого назначения исследований. При крупном масштабе точки комплексного описания зачастую закладываются в соседних комплексах. По маршруту отмечают те небольшие изменения, которые удается заметить по сравнению с уже описанной точкой, размеры и конфигурацию ПТК, характер перехода к другому комплексу. Если маршрут проходит через природные территориальные комплексы, в которых не запланировано комплексное описание точек вследствие того, что аналогичные комплексы уже были описаны ранее, то по маршруту делают краткую дневниковую запись вновь встреченных ПТК с элементами сравнения с уже описанными.

Средний и мелкий масштабы работ характеризуются «разбросанностью» точек, значительными расстояниями между ними, поэтому роль маршрутных наблюдений усиливается. Большое внимание уделяется морфологической структуре природных территориальных комплексов, активным ландшафтообразующим процессам, характеру хозяйственного использования и антропогенным изменениям природных комплексов.

Сбор образцов и других натурных экспонатов

Сбор образцов в поле не может носить случайный характер, так как каждый образец должен быть документирован (снабжен этикеткой и записан в бланк или дневник), тщательно упакован, транспортирован, а это требует и времени, и средств. Поэтому надо всегда определять заранее, для чего и сколько будет собрано образцов и экспонатов.

Гербарий и образцы растений.

Если отряд не имеет особого задания по сбору гербария для музея, кабинета, лаборатории, то по ходу самих комплексных физико-географических исследований в гербарий берут лишь те виды растений, которые требуют определения. Каждый вид собирают в нескольких экземплярах (не менее трех) и укладывают в папку, в стандартные листы бумаги (30 - 40 см). На этикетке записывают название экспедиции, номер точки, условия местообитания, дату сбора и фамилию собравшего. Сушку производят в туго перевязанных гербарных сетках, подвешенных на воздухе в тени. В первое время ежедневно меняют не только прокладки, но и сами «рубашки», в которых лежат растения (обычно это сдвоенные листы с клапаном). Позже, когда растения уже существенно подсохнут, можно ограничиться сменой только прокладок. Впрочем, процесс сушки зависит от того, какие растения засушивают. Злаки, как правило, высыхают быстро, не доставляя хлопот, а какие-нибудь суккуленты будут мокнуть, чернеть, плесневеть и т.д., и избежать этого очень трудно.

При сборе растений в гербарий следует соблюдать общепринятые правила: каждое растение берут целиком, включая верхнюю часть корневой системы; если растение слишком крупное, то в гербарий закладывают его отдельные характерные части. По возможности в гербарий должны попасть и цветы, и семена (плоды) или хотя бы что-то одно.

Собранные растения сохраняют под условными названиями до полного их определения. Если можно надеяться определить некоторые растения самим с помощью определителя или агронома, то вместо гербария можно принести на базу образцы в букете, поместив его в полиэтиленовый пакет, чтобы растения не слишком завяли.

Растения и растительные остатки могут быть собраны и для других целей. Так, на опорных точках могут браться образцы для сопряженных геохимических анализов, могут понадобиться спилы и керны деревьев для дендрохронологических исследований. Для таких сборов необходимо ознакомиться со специальными методиками.

Почвенные образцы, как правило, собирают в значительном количестве. При крупномасштабных исследованиях, ориентированных на оценку сельскохозяйственных земель, количество образцов, подлежащих различным видам анализов, определяется инструкцией почвенной съемки. В других случаях образцы могут быть собраны в ином объеме, предусмотренном программой работ. Часть образцов берется только для повторного просмотра на базе (смотровые образцы). Они могут иметь произвольные размеры и упаковку, сокращенную документацию. Образцы же, предназначенные для анализов, должны быть весьма тщательно документированы, высушены и упакованы.

Почвенные образцы берут из каждого генетического горизонта, но не реже, чем через 50 см. В случае большой мощности горизонта из него берут два-три образца. Образец вырезают ножом, а если почва рыхлая, то его насыпают в специальные мешочки или заворачивают в крафтовую бумагу. По вертикали образец не должен быть более 10 см. Исключение делается только для пахотного горизонта, который берется на всю его мощность. В бланке записывают номер образца и глубину от поверхности его верхней и нижней границы, например:

1) 0 - 22;

2) 25 - 30;

3) 35 - 45 и т.д.

Размеры (вес) образца зависят от того, для каких анализов он предназначен. Если это генетические образцы, которые будут подвергнуты довольно полному анализу, то их размеры должны быть не менее 1 дм3. Если же это массовые агрохимические образцы, взятые на гумус, кислотность, азот, фосфор, калий из одного или двух верхних горизонтов, то их объем может быть в два раза меньшим.

В этикетке записывают название экспедиции, номер точки, мощность горизонта и глубину взятия образца (в виде дроби), дату, фамилию собравшего. Этикетку заполняют простым карандашом, свертывают внутрь написанным и кладут так, чтобы она минимально пострадала при перевозке. Если образец упаковывают в бумагу (обычно в крафтовую), то этикетку заворачивают в угол листа или закладывают иначе, но так, чтобы она не соприкасалась непосредственно с образцом. В мешочках этого избежать не удается.

Геологические сборы тоже должны иметь определенную цель. Образцы могут брать для уточнения (или определения) состава, генезиса, возраста пород, для сопряженных геохимических анализов. Часть сборов может иметь временный характер (для повторного просмотра). Образцы для анализов тщательно документируют и упаковывают.

Археологические или единичные интересные фаунистические находки также следует документировать и транспортировать на место камеральных работ для передачи заинтересованным организациям и лицам. Если же шурф попал на древнюю стоянку или захоронение, то раскопку вести нельзя, а нужно сообщить о находке археологам.

Палеогеографические образцы собирают в том случае, если обследуемое обнажение или разрез представляют особый интерес для установления стратиграфии отложений и палеогеографии четвертичного периода (ископаемые торфяники, озерные отложения). Здесь своя методика взятия образцов, с которой надо ознакомиться. Основное же правило состоит в том, чтобы брать в качестве образца как можно более тонкий слой породы (чтобы не захватить в один образец разновозрастные горизонты). Очень велика также требовательность к чистоте образца (для упаковки используют пергамент или кальку). Большая частота взятия образцов по обнажению — также необходимое условие их полноценности. Размеры образцов могут быть очень небольшими.

Образцы воды берут для сопряженных геохимических анализов либо просто для характеристики вод территории. Нередко пользуются стеклянными бутылками объемом 0,5 л. На каждой точке обычно берут 2 л, т.е. четыре бутылки. Тщательно вымытые бутылки в последний раз ополаскивают водой из того источника, откуда будет взята проба, заливают доверху и закрывают резиновой соской. К горлышку привязывают этикетку. Транспортируют бутылки в обычных деревянных или металлических ящиках с ячейками. В последнее время стали широко применять полиэтиленовые канистры и фляги. Для некоторых видов анализов требуется особая консервация воды, а иногда и больший объем проб.

Образцы для сопряженных геохимических анализов (почв, пород, растений, вод) берут, как правило, не на одной точке, а на нескольких, по катене — от элювиальных фаций до супераквальных.

Образцы почв, в отличие от описанного выше способа, применяемого в ландшафтном профилировании и картографировании, для ландшафтно-геохимических анализов берут не из средней части генетического горизонта, а по всей его мощности. Рекомендуется бороздчатый способ, при котором каждый образец выскребается или вырезается ножом от верхней границы горизонта до нижней. Чем меньше мощность горизонта, тем шире и глубже должна быть борозда, чтобы общая масса образца достигала 0,5 кг. При очень малой мощности горизонта борозды вообще не получается, приходится выбирать почву ножом по всей ширине лицевой стенки, строго следя за тем, чтобы не захватить лишнего материала из смежных горизонтов.

От образца, предназначенного для различных видов анализов (механического, минералогического, валового химического и др.), отбирают среднюю пробу в 50 г для спектрального полуколичественного анализа. Отдельно отбирают новообразования, по возможности в таком количестве, чтобы можно было сделать шлифы для изучения минералогического состава, а также произвести валовой и спектральный анализы.

Если в программе работ предусмотрен микроморфологический анализ, то для него берут образцы с ненарушенной структурой. Это должны быть микромонолиты, помещенные в маленькие коробочки. После просушки образца свободное пространство в коробочке закладывают ватой или бумагой для сохранения структуры почвы при транспортировке.

Для каждого почвенного горизонта рекомендуется определить объемный вес и полевую влажность почвы. Знание объемного веса необходимо при последующих пересчетах данных химических анализов из весовых процентов в объемные и для получения величин общего объема отдельных элементов в ярусах природного комплекса. Определение объемного веса и полевой влажности позволяет также рассчитать соотношение твердой, жидкой и газообразной фаз в профиле изучаемой фации.

Образцы растений берут таким образом, чтобы сухая масса составляла не менее 300 г. Наиболее сложен отбор проб древесной растительности. Необходимо отдельно отбирать листья или хвою, тонкие ветви до 1 см в диаметре, более толстые ветви, кору на высоте около 1 м от земли, корни (отдельно тонкие - до 1 см в диаметре и толстые), шишки, желуди, сережки, образцы древесины ствола. Последние берут из модельных деревьев. Из каждого отрезка ствола отпиливают для анализов пластинку толщиной 1 — 2 см, массой 1,5 — 2 кг. Она же служит для выявления процесса роста дерева (по годовым кольцам). Образцы кустарников берут по тому же принципу, что и древесных пород.

Для определения аналитических данных смешанного травяного покрова можно использовать укосы пробных площадок. Помимо этого представляет интерес взятие проб отдельных видов растений, особенно доминантов. Из более редких растений предпочтение отдается тем, у которых развита глубокая корневая система. При этом у кустарничков и полукустарничков с одревесневшими стеблями стебли берут отдельно от листьев.

Корни лучше собирать после срезания надземной массы растений. Их осторожно подкапывают и вытаскивают, несколько раз (по мере сушки) отряхивают от земли, чистят мягкой щеткой, но не моют, чтобы избежать выщелачивания части веществ. Толстые и тонкие корни, как отмечалось, берут отдельно. Все образцы этикетируют, сушат, затем измельчают ножницами или руками.

Пробы воды берут из шурфа, а также из родника, ручья, реки, озера, расположенных в нижней части изучаемой катены.

Донные отложения и образцы водных растений(и животных)отбирают после комплексного описания водоема (с профильной зарисовкой). Их быстро просушивают, чтобы остановить микробиологические процессы, могущие повлиять на результаты анализов.

Фотографии, сделанные в поле, могут служить дополнительным документальным фактическим материалом. Основное требование при этом - точная привязка и датировка кадров (где и когда сделан снимок). Эти сведения обычно записывают в дневнике вместе с замечаниями о содержании кадра.

Возможности получения точной документальной информации с помощью фотографий непрерывно возрастают вместе с развитием техники фотографирования (различные системы фотоаппаратов, широкоугольные объективы, телеобъективы, насадочные кольца для макросъемок, цветная фотография, приспособления для получения моментального фотоизображения и т.д.). Применяются также кино- и видеосъемка.